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Abstract
Knowledge graph completion (KGC) aims to predict the missing links among knowledge graph

(KG) entities. Though various methods have been developed for KGC, most of them can only deal
with the KG entities seen in the training set and cannot perform well in predicting links concerning
novel entities in the test set. Similar problem exists in temporal knowledge graphs (TKGs), and no
previous temporal knowledge graph completion (TKGC) method is developed for modeling newly-
emerged entities. Compared to KGs, TKGs require temporal reasoning techniques for modeling,
which naturally increases the difficulty in dealing with novel, yet unseen entities. In this work, we
focus on the inductive learning of unseen entities’ representations on TKGs. We propose a few-shot
out-of-graph (OOG) link prediction task for TKGs, where we predict the missing entities from
the links concerning unseen entities by employing a meta-learning framework and utilizing the
meta-information provided by only few edges associated with each unseen entity. We construct
three new datasets for TKG few-shot OOG link prediction, and we propose a model that mines
the concept-aware information among entities. Experimental results show that our model achieves
superior performance on all three datasets and our concept-aware modeling component demonstrates
a strong effect.

1. Introduction

Knowledge graphs (KGs) store factual information in the form of triples, i.e., (s, r, o), where s,
o, r denote the subject entity, the object entity, and the relation between them, respectively. KGs
have already been widely used in a series of downstream tasks, e.g., question answering [Saxena
et al., 2020, Ding et al., 2022b] and recommender systems [Wang et al., 2019c,a]. While KG
triples are capable of representing facts, they cannot express their time validity. World knowledge is
ever-changing, which means many facts have their own time validity, e.g., the fact (Angela Merkel,
is chancellor of, Germany) is valid only before (Olaf Scholz, is chancellor of, Germany). To this
end, temporal knowledge graphs (TKGs) are introduced to consider the time validity of facts by
representing every fact with a quadruple, i.e., (s, r, o, t), where t denotes the time when the fact is
valid.

*. Equal contribution.
†. Corresponding author.
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KGs and TKGs are known to suffer from incompleteness [Min et al., 2013, Leblay and Chekol,
2018]. Therefore, various methods have been developed for automatically completing KGs [Nickel
et al., 2011, Bordes et al., 2013, Trouillon et al., 2016, Sun et al., 2019, Guo and Kok, 2021b]
and TKGs [Tresp et al., 2015, Leblay and Chekol, 2018, Ma et al., 2019, Jung et al., 2021, Ding
et al., 2021]. Though these methods achieve superior performance on knowledge graph completion
(KGC) and temporal knowledge graph completion (TKGC), they have their limitations. In real-world
scenarios, KGs and TKGs evolve over time, indicating that new (unseen) entities may emerge
constantly [Shi and Weninger, 2018]. Besides, real-world KGs exhibit long-tail distributions, where a
large portion of entities only have few edges [Baek et al., 2020]. This also applies to TKGs, e.g., the
entity frequency distribution of ICEWS datasets (Appendix A). Traditional KGC and TKGC methods
learn the representations of the observed (seen) entities, and perform link prediction over a fixed
set of entities. To learn the optimal representations of the observed entities, these methods require
a large number of training examples associated with each of them. [Baek et al., 2020] shows that
traditional KGC methods show poor performance when they are used to predict the links concerning
newly-emerged, yet unseen entities. In our work, we also observe that traditional TKGC methods
share the same problem (Section 5.3).

To tackle the limitations of traditional TKGC methods, we propose the TKG few-shot out-of-
graph (OOG) link prediction task and a TKG reasoning model for better learning the inductive
representations of newly-emerged entities in TKGs. Inspired by recent work that mines shared
concepts of stocks for improving stock prediction [Li et al., 2020, Xu et al., 2021b], we devise a
module, taking advantage of the entity concepts provided by the temporal knowledge bases. The
contribution of our work is three-folded:

• We propose the TKG few-shot out-of-graph (OOG) link prediction task. To better learn the
inductive representations of unseen entities and predict their links, we propose a meta-learning-
based model. To the best of our knowledge, this is the first work aiming to improve the link
prediction performance concerning unseen entities in TKGs.

• We extract the entity concepts from the temporal knowledge bases and take them as additional
information to boost our model performance. We design an effective module to learn concept-
aware information. The experimental results show that introducing such information helps to
learn better representations for unseen entities in the inductive setting.

• We propose three new datasets for TKG few-shot OOG link prediction, i.e., ICEWS14-OOG,
ICEWS18-OOG and ICEWS0515-OOG. We compare our model with several baseline methods.
Experimental results show that our model outperforms all the baselines on all three datasets.

2. Related Work

Knowledge graph embedding methods. Knowledge graph embedding (KGE) methods can be
split into two categories. Some methods design scoring functions to compute the plausibility scores
of KG facts [Bordes et al., 2013, Trouillon et al., 2016, Sun et al., 2019, Guo and Kok, 2021b], while
other KGE methods employ neural-based structures, e.g., graph neural networks (GNNs), to better
capture the structural dependencies of KGs [Schlichtkrull et al., 2018, Vashishth et al., 2020, Yu
et al., 2021]. By combining neural-based graph encoders with KG scoring functions, these methods
achieve superior performance in KG reasoning tasks.
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Temporal knowledge graph embedding methods. To deal with the temporal constraints in TKG
facts, two lines of temporal knowledge graph embedding (TKGE) methods have been developed.
The first line of methods designs novel time-aware scoring functions for characterizing extra time
information [Leblay and Chekol, 2018, Ma et al., 2019, Lacroix et al., 2020, Sadeghian et al., 2021,
Han et al., 2020a, 2021c]. The second line of methods models temporal information by employing
neural structures, e.g., GNNs and recurrent models. [Han et al., 2021a, Jung et al., 2021, Ding et al.,
2021, Han et al., 2020b, Sun et al., 2021] sample every entity’s temporal neighbors and use GNNs to
learn time-aware representations of them. [Wu et al., 2020] and [Han et al., 2021b] model structural
information with GNNs, and they achieve temporal reasoning by utilizing a gated recurrent unit [Cho
et al., 2014] and a neural ordinary differential equation [Chen et al., 2018], respectively.

Inductive learning on knowledge graphs. Traditional KGE and TKGE methods require a large
number of training examples to learn entity representations. However, in real-world scenarios, KGs
and TKGs are ever-evolving, and they exhibit long-tail distributions. New entities and relations
emerge and a huge portion of them only have very few associated facts, thus causing traditional
methods unable to learn optimal representations. To alleviate this problem, a line of work [Xiong et al.,
2018, Chen et al., 2019, Sheng et al., 2020, Mirtaheri et al., 2021, Ding et al., 2022a] tries to employ
meta-learning to learn inductive representations of unseen KG (or TKG) relations. Nevertheless,
they are unable to deal with novel entities. Several methods try to deal with unseen (out-of-graph)
entities in an inductive setting [Hamaguchi et al., 2017, Wang et al., 2019b, He et al., 2020]. They
first learn representations of seen entities, and then use an auxiliary set to transfer knowledge from
seen to unseen entities during inference. [Baek et al., 2020] proposes a more realistic task: few-shot
out-of-graph (OOG) link prediction, where the links among unseen entities are also considered during
evaluation and the representation of every unseen entity can only be derived from very few (number
of shot size) edges. Baek et al. simulate the unseen entities in the training phase and introduce
meta-learning for learning unseen entities’ representations. Based on it, [Zhang et al., 2021] proposes
a model using hyper-relation features to improve performance on few-shot OOG link prediction.
Another series of work tries to include external information of entities, e.g., textual descriptions, to
solve this problem [Xie et al., 2016, Wang et al., 2019d] and it turns out to be effective in modeling
unseen entities. Though there exist various methods dealing with OOG unseen entities in KGs, there
is still no method specifically designed to embed unseen entities inductively for TKGs.

3. Preliminaries and Task Formulation

Entity concepts in temporal knowledge graphs. Entity concepts describe the characteristics of
KG entities. They are manually defined by humans and assigned to every KG entity. In the ICEWS
database [Boschee et al., 2015], entities belong to several sectors, e.g., Government, Executive Office.
Each entity’s sectors are specified in the ICEWS weekly event data1. We treat the sectors of an entity
as its concepts and learn concept representations as additional information. We observe that some
region entities in the ICEWS database, e.g., South Korea and North America, have no specified
sectors. We manually assign a new sector Region to them. We ensure that every entity has its own
sectors. More details about concept extraction is presented in Appendix F.

Task formulation. We first give the definition of a temporal knowledge graph, then we formulate
the TKG few-shot out-of-graph link prediction task.

1. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QI2T9A
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Definition 1 (Temporal Knowledge Graph (TKG)). Let E , R and T denote a finite set of entities,
relations and timestamps, respectively. A temporal knowledge graph (TKG) G can be taken as a
finite set of TKG facts represented by their associated quadruples, i.e., G = {(s, r, o, t)|s, o ∈ E , r ∈
R, t ∈ T } ⊆ E ×R× E × T .
Definition 2 (Temporal Knowledge Graph Few-Shot Out-of-Graph Link Prediction). Given an
observed background TKG Gback ⊆ Eback ×R× Eback × T , an unseen entity e′ is an entity e′ ∈ E ′,
where E ′ ∩ Eback = ∅. Assume we further observe K associated quadruples for each unseen entity e′

in the form of (e′, r, ẽ, t) (or (ẽ, r, e′, t)), where ẽ ∈ (Eback ∪ E ′), r ∈ R, t ∈ T , and K is a small
number denoting the shot size, e.g., 1 or 3. TKG few-shot out-of-graph link prediction aims to
predict the missing entities from the link prediction queries (e′, rq, ?, tq) (or (?, rq, e′, tq)) derived
from unobserved quadruples containing unseen entities, where rq ∈ R, tq ∈ T .

We further formulate the TKG few-shot OOG link prediction task into a meta-learning problem.
For a TKG G ⊆ E ×R× E × T , we first select a group of entities E ′, where each entity’s number
of associated quadruples is between a lower and a higher threshold. We aim to pick out the entities
that are not frequently mentioned in TKG facts since newly-emerged entities normally are coupled
with only several edges. We randomly split these entities into three groups E ′

meta-train, E ′
meta-valid

and E ′
meta-test. For each group, we treat the union of all the quadruples associated to this group’s

entities as the corresponding meta-learning set, e.g., the meta-training set Tmeta-train is formulated
as {(e′, r, ẽ, t)|ẽ ∈ E , r ∈ R, e′ ∈ E ′

meta-train, t ∈ T } ∪ {(ẽ, r, e′, t)|ẽ ∈ E , r ∈ R, e′ ∈ E ′
meta-train, t ∈

T }. We ensure that there exists no link between every two of the meta-learning sets. The associated
quadruples of the rest entities form a background graph Gback ⊆ Eback × R × Eback × T , where
E ′ ∩ Eback = ∅ and E = (Eback ∪ E ′). We take the meta-training entities E ′

meta-train as simulated
unseen entities and try to learn how to transfer knowledge from seen entities Eback to them during
meta-training. The entities in E ′

meta-valid and E ′
meta-test are real unseen entities that are used to evaluate

the model performance.
Based on [Baek et al., 2020], we define a meta-training task T as follows. In each task T , we first

randomly sample N simulated unseen entities ET from E ′
meta-train. Then we randomly select K associ-

ated quadruples for each e′ ∈ ET as its support quadruples Se′ = {(e′, ri, ẽi, ti) or (ẽi, ri, e′, ti)}Ki=1,
where K is the shot size and ẽi ∈ (Eback ∪ E ′). The rest of e′’s quadruples are taken as its query
quadruples Qe′ = {(e′, ri, ẽi, ti) or (ẽi, ri, e′, ti)}

Me′
i=K+1, where Me′ denotes the number of e′’s

associated quadruples in Tmeta-train and ẽi ∈ (Eback ∪ E ′). For every meta-training task T , the aim
of TKG few-shot OOG link prediction is to simultaneously predict the missing entities from the
link prediction queries derived from the query quadruples associated to all the entities from ET ,
e.g., (e′, ri, ?, ti) or (?, ri, e′, ti). In this way, we simulate the situation that we simultaneously
observe a bunch of unseen entities and each of them has only few edges, which is similar to how
emerging entities appear in temporal knowledge bases. After meta-training, we validate our model
on a meta-validation set Tmeta-valid and test our model on a meta-test set Tmeta-test, where they contain
all the quadruples associated to the entities in E ′

meta-valid and E ′
meta-test, respectively. We do not sample

N entities during meta-validation and meta-test. Instead, we treat all the entities in E ′
meta-valid (or

E ′
meta-test) as appearing at the same time. For a better understanding, we present Figure 5 to illustrate

how we formulate the TKG few-shot OOG link prediction task into a meta-learning problem. We
also discuss the difference between our proposed task and traditional TKGC in Appendix D.

We summarize the challenge of TKG few-shot OOG link prediction as follows: (1) TKG
reasoning models are asked to predict the links concerning the newly-emerged entities that are
completely unseen during the training process; (2) Only a small number (K) of edges associated with
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each newly-emerged entity are observable to support predicting the unobserved links concerning this
entity.

4. Our Method

Figure 1: Model structure of FILT. Assume we have an unseen entity e′, and we want to predict
a link corresponding to (e′, ri, ẽi, ti) ∈ Qe′ . We derive the concept representations in the concept
modeling component and use a time difference-based graph encoder for learning e′’s time-aware
representation. We take the representations of ri and ẽi to compute the plausibility score of the link.

We propose a model dealing with few-shot inductive learning on TKGs (FILT). Figure 1 shows the
model structure of FILT. It consists of three components: (1) Concept modeling component that
represents entity concepts based on seen entities’ representations; (2) Time difference-based graph
encoder that learns the contextualized representations of unseen entities; (3) KG scoring function
that computes the plausibility scores of the TKG quadruples concerning unseen entities.

4.1 Concept Modeling Component

When a new entity emerges in a TKG, though there might be only few observed associated edges,
some of its concepts, e.g., which sectors it belongs to, are already known. Since every entity concept
is shared across all the entities in this TKG, we can learn concept information from seen entities and
transfer it to newly-emerged entities.

Inspired by [Xu et al., 2021b] that mines concept-aware information for stock prediction, we
develop a concept modeling component to learn TKG entity concepts as follows. First, we pre-train
our background graph with ComplEx [Trouillon et al., 2016]. Note that only seen entities Eback are
involved in the pre-training process. Assume we have a set of entity concepts C, then we initialize the
representation of every entity concept c ∈ C with its associated entities by averaging these entities’
representations:

hc =
1

|Nc|
∑
e∈Nc

he, (1)

where hc and he denote the representations of the concept c and the entity e, respectively. Nc denotes
the neighborhood of the entity concept c. For example, if two TKG entities Angela Merkel and Xi
Jinping both belong to the concept Elite, they will be included into Elite’s neighborhood. Since we
want to distinguish the contributions of different entities to an entity concept, we then correct the
concept representations as follows:

hc =
∑
ei∈Nc

αeic hei , αeic =
exp(h⊤

eihc)∑
ej∈Nc

exp(h⊤
ejhc)

. (2)
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After we correct the concept representations, we compute an entity’s concept-aware information by
aggregating the representations of its associated concepts:

hCe
e =

∑
ci∈Ce

βcie hci , βcie =
exp(h⊤

cihe)∑
cj∈Ce exp(h

⊤
cjhe)

. (3)

Ce ⊆ C denotes the set of all concepts associated to e. As shown in Figure 1, we inject the concept-
aware information into two branches. We use two separate layers of feed forward neural network
and project the concept-aware information onto two branches. The upper branch adds the concept
information to the entity representations he := he + δ1σ(W

1
ch

Ce
e ) and take them as the input of

our graph encoder. The lower branch processes the concept information δ2σ(W2
ch

Ce
e ) and adds it

to the entity representations after the graph aggregation step. δ1 and δ2 are two trainable weights
deciding how much concept-aware information should be injected. W1

c and W2
c are two weight

matrices and σ is an activation function. By employing the double branch structure, we not only
include the concept information into the graph encoder, but also directly infuse it into the final entity
representations for link prediction.

4.2 Time Difference-Based Graph Encoder

Figure 2: The structure of the time difference-based graph encoder. Assume we have an unseen
entity Chongwadai, and we have a link prediction query (Chongwadai, Engage in negotiation,
?, 2014-07-24), given three support quadruples, i.e., (North Korea, Make an appeal or request,
Chongwadai, 2014-09-22), (Chongwadai, Make statement, Grand National Party, 2014-06-05), and
(Chongwadai, Make statement, Barak Obama, 2014-04-04). We use our graph encoder to compute
the time-aware contextualized representation of Chongwadai at 2014-07-24. For each temporal
neighbor from a support quadruple, we compute its importance according to the time difference
between 2014-07-24 and the timestamp of its corresponding support quadruple. We denote the
temporal neighbors with colored circles. The color darkness of the circles implies the importance of
the temporal neighbors during aggregation in Equation 4. The darker circle a temporal neighbor is
represented with, the more important it is, i.e., γ2q > γ1q > γ3q .

To compute the contextualized representations of the unseen entities, we employ a time difference-
based graph encoder. For each unseen entity e′, assume we have a link prediction query (e′, rq, ?, tq)
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derived from a query quadruple (e′, rq, ẽq, tq) ∈ Qe′ . We first find its temporal neighbors from
its support quadruples Se′ = {(e′, ri, ẽi, ti) or (ẽi, ri, e′, ti)}Ki=1, and then compute e′’s time-aware
representation at tq through aggregation:

h(e′,tq) =
∑

(ẽi,ri,ti)∈Ne′

γiqWg(hẽi∥hri), γiq =
exp(1/|tq − ti|)∑

(ẽj ,rj ,tj)∈Ne′
exp(1/|tq − tj |)

. (4)

Wg denotes the weight matrix in our graph encoder. Ne′ denotes the observed neighborhood of e′

and |Ne′ | = K. γiq is the importance of the ith temporal neighbor ẽi based on the time difference
between tq and ti. The smaller the time difference is, the more important a temporal neighbor is
during aggregation. The motivation of our time difference-based graph encoder is that we assume
the temporal neighbors that are temporally closer to the query timestamp tq tend to contribute more
to predicting the links at tq. Since we take the temporal neighbors of an entity from its incoming
edges, we transform every support quadruple whose form is (e′, ri, ẽi, ti) to (ẽi, r

−1
i , e′, ti), where

r−1
i corresponds to the inverse relation of ri. We manage to incorporate every support quadruple into

the aggregation process with this quadruple transformation. Note that if tq − ti = 0, the denominator
of the exponential term will be 0. Thus, we use a constant λ to assign a value to exp(1/|tq − ti|) if tq
equals ti, and λ serves as a hyperparameter that can be tuned. Figure 2 illustrates the structure of our
graph encoder with an example. After aggregation, we further infuse the concept-aware information
from the lower branch into the output of our graph encoder: h(e′,tq) := h(e′,tq) + δ2σ(W

2
ch

Ce′
e′ ). We

show in Section 5.4 that our simple-structured graph encoder can beat more complicated structures
in the TKG OOG link prediction task.

4.3 Parameter Learning

For each meta-training task T , we have N simulated unseen entities ET . We use the hinge loss for
learning model parameters:

L =
∑
e′∈ET

∑
q+∈Qe′

∑
q−∈Q−

e′

max{θ − score(q+) + score(q−), 0}. (5)

θ > 0 is the margin. q+ denotes a query quadruple from e′’s query set. q− is generated by negative
sampling [Bordes et al., 2013]. For every q+ = (e′, rq, ẽq, tq) (or q+ = (ẽq, rq, e

′, tq)), we corrupt
ẽq with another entity e− ∈ {E ′, Eback}. We map our learned representations to the complex space
and use ComplEx [Trouillon et al., 2016] as our scoring function, i.e., score = Re < hs,hr, h̄o >,
where hs, ho denote the representations of the subject entity and the object entity, respectively. hr
denotes the relation representation. Re means taking the real part, and h̄o means taking the conjugate
of the vector ho.

5. Experiments

We compare FILT with several baselines on TKG few-shot OOG link prediction. To prove the effec-
tiveness of the model components, we conduct several ablation studies. We also do further analysis
to show the robustness of our method. Besides, we visualize the learned concept representations and
show that our concept modeling component helps to capture the semantics of entity concepts.
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5.1 Datasets

We propose three TKG few-shot OOG link prediction datasets, i.e., ICEWS14-OOG, ICEWS18-OOG,
and ICEWS0515-OOG. We first take three subsets, i.e., ICEWS14, ICEWS18, and ICEWS05-15,
from the Integrated Crisis Early Warning System (ICEWS) database [Boschee et al., 2015], where
they contain the timestamped political facts in 2014, in 2018, and from 2005 to 2015, respectively.
Following the data construction process of [Baek et al., 2020], for each subset, we first randomly
sample half of the entities whose number of associated quadruples is between a lower and a higher
threshold as unseen entities. Then we split the sampled entities into three groups E ′

meta-train, E ′
meta-valid,

E ′
meta-test (E ′

meta-train ∩ E ′
meta-valid = ∅, E ′

meta-train ∩ E ′
meta-test = ∅, E ′

meta-valid ∩ E ′
meta-test = ∅), where

|E ′
meta-train| : |E ′

meta-valid| : |E ′
meta-test| ≈ 8 : 1 : 1. The associated quadruples of all the entities in

E ′
meta-train/E ′

meta-valid/E ′
meta-test form the meta-training/meta-validation/meta-test set. The rest of the

quadruples without unseen entities are used for constructing a background graph Gback. The dataset
statistics are presented in Table 1. We present the dataset construction process in Appendix H.

Dataset |E| |R| |T | |E ′
meta-train| |E ′

meta-valid| |E ′
meta-test| Nback Nmeta-train Nmeta-valid Nmeta-test

ICEWS14-OOG 7128 230 365 385 48 49 83448 5772 718 705
ICEWS18-OOG 23033 256 304 1268 160 158 444269 19291 2425 2373

ICEWS0515-OOG 10488 251 4017 647 80 82 448695 10115 1217 1228

Table 1: Dataset statistics. |E ′
meta-train|, |E ′

meta-valid|, |E ′
meta-test| denote the number of unseen entities

in the meta-training set, meta-validation set, meta-test set, respectively. Nback denotes the number
of quadruples in the background graph Gback. Nmeta-train, Nmeta-valid, Nmeta-test denote the number of
quadruples concerning unseen entities in Tmeta-train, Tmeta-valid, Tmeta-test, respectively.

5.2 Baseline Methods

We take four types of methods as our baselines. First we consider two traditional KGC methods, i.e.,
ComplEx [Trouillon et al., 2016] and BiQUE [Guo and Kok, 2021a]. Then we consider several tradi-
tional TKGC methods, i.e., TNTComplEx [Lacroix et al., 2020], TeLM [Xu et al., 2021a], and TeRo
[Xu et al., 2020a]. We combine all the quadruples in the background graph Gback with the quadruples
of the meta-training set to construct a training set for traditional KGC as well as TKGC methods, and
let them evaluate on all the query quadruples in the meta-validation/meta-test set. We also include
two inductive KGC methods for OOG link prediction that do not employ meta-learning framework,
i.e., MEAN [Hamaguchi et al., 2017], LAN [Wang et al., 2019b]. To achieve fair comparison, we
only allow them to utilize support quadruples during inference, rather than an auxiliary set containing
a large number of quadruples for each unseen entity e′ ∈ {E ′

meta-valid, E ′
meta-test}. Apart from the first

three types of methods, we further consider a meta-learning-based method GEN [Baek et al., 2020]
which deals with few-shot OOG link prediction on static KGs. For the baseline methods designed for
static KGs, we provide them with all the quadruples in our datasets and neglect time constraints, i.e.,
neglecting t in (s, r, o, t). We ensure that all the methods evaluate exactly the same quadruples.

5.3 Experimental Results

We report the TKG 1-shot and 3-shot OOG link prediction results in Table 2. We use mean reciprocal
rank (MRR) and Hits@1/3/10 as the evaluation metrics (definition in Appendix B). We follow the
filtered setting [Bordes et al., 2013] for fairer evaluation. We observe that traditional KGC and TKGC
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methods show inferior performance in predicting the links concerning unseen entities. This is due
to their nature that they have no way to transfer knowledge from seen to unseen entities. Besides,
they learn representations of seen entities with a large number of associated training examples, thus
causing the learned representations more prone to the data concerning seen entities and failing to
embed unseen entities inductively. We also observe that inductive learning methods for static KGs
show degenerated performance. MEAN, LAN, heavily rely on the auxiliary set during inference.
We constrain their auxiliary set to only include the support quadruples, where only 1 associated
quadruple for each unseen entity is included in the 1-shot case (3 associated quadruples in the
3-shot case). Experimental results show that these methods cannot effectively deal with newly-
emerged entities that have only few observed edges, which is common in real-world scenarios. GEN
employs meta-learning during training, thus having the ability to alleviate the data sparsity problem.
However, it has no component to model temporal information, and it also does not incorporate any
additional information, e.g., textual information and concept-aware information. To this end, GEN
underperforms FILT in both 1-shot and 3-shot cases. Another crucial point worth noting is that
the margin between FILT and GEN is much larger in the 3-shot case than in the 1-shot case. We
attribute this to our time difference-based graph encoder. Our encoder distinguishes the importance
of multiple support quadruples and aggregates the temporal neighbors more effectively.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
Model 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

ComplEx .048 .046 .018 .014 .045 .046 .099 .089 .039 .044 .031 .026 .048 .042 .085 .093 .077 .076 .045 .048 .074 .071 .129 .120
BiQUE .039 .035 .015 .014 .041 .030 .073 .066 .029 .032 .022 .021 .033 .037 .064 .073 .075 .083 .044 .049 .072 .077 .130 .144

TNTComplEx .043 .044 .015 .016 .033 .042 .102 .096 .046 .048 .023 .026 .043 .044 .087 .082 .034 .037 .014 .012 .031 .036 .060 .071
TeLM .032 .035 .012 .009 .021 .023 .063 .077 .049 .019 .029 .001 .045 .013 .084 .054 .080 .072 .041 .034 .077 .072 .138 .151
TeRo .009 .010 .002 .002 .005 .002 .015 .020 .007 .006 .003 .001 .006 .003 .013 .006 .012 .023 .000 .010 .008 .017 .024 .040

MEAN .035 .144 .013 .054 .032 .145 .082 .339 .016 .101 .003 .014 .012 .114 .043 .283 .019 .148 .003 .039 .017 .175 .052 .384
LAN .168 .199 .050 .061 .199 .255 .421 .500 .077 .127 .018 .025 .067 .165 .199 .344 .171 .182 .081 .068 .180 .191 .367 .467

GEN .231 .234 .162 .155 .250 .284 .378 .389 .171 .216 .112 .137 .189 .252 .289 .351 .268 .322 .185 .231 .308 .362 .413 .507

FILT .278 .321 .208 .240 .305 .357 .410 .475 .191 .266 .129 .187 .209 .298 .316 .417 .273 .370 .201 .299 .303 .391 .405 .516

Table 2: TKG 1-shot and 3-shot OOG link prediction results. Evaluation metrics are filtered MRR
and Hits@1/3/10 (H@1/3/10). The best results are marked in bold.

5.4 Ablation Study

To prove the effectiveness of the model components, we conduct several ablation studies on ICEWS14-
OOG and ICEWS18-OOG. We devise model variants in the following way. (A) Concept Mod-
eling Variants: In A1 we run our model without the concept modeling component. In A2, we
delete the lower branch connecting the concept modeling component with the output of the graph
encoder. In A3, we delete the upper branch connecting the concept modeling component with
the input of the graph encoder. (B) Graph Encoder Variants: In B1, we neglect the time in-
formation and switch our graph encoder to RGCN [Schlichtkrull et al., 2018]. In B2, we use
Time2Vec [Kazemi et al., 2019] to model temporal information. In B3, we employ the functional
time encoder introduced in [Xu et al., 2020b] as our graph encoder. In B4, we derive a time-
aware attentional network as our graph encoder: h(e′,tq) =

∑
(ẽi,ri,ti)∈Ne′

γiqWg(hẽi∥hri), where

γiq =
exp(σ(([hrq∥Φ(tq)]WQ)⊤([hri∥Φ(ti)]WK)))∑

(ẽj ,rj ,tj)∈Ne′
exp(σ(([hrq∥Φ(tq)]WQ)⊤([hrj ∥Φ(tj)]WK)))

. Φ denotes the functional time encoder

proposed in [Xu et al., 2020b] and WQ, WK are two weight matrices.
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We report the experimental results of the ablation studies in Table 3. From A1 to A3, we show
that our concept modeling component helps to improve model performance, and it benefits from its
double branch structure. From B1, we find that incorporating temporal information into the graph
encoder is important for modeling TKGs. Besides, B2 to B4 show that in TKG few-shot OOG link
prediction, it is not necessary to employ a complicated graph encoding structure. A possible reason
is that we can only observe K (1 or 3) associated quadruples for every unseen entity, and this forms
a tiny neighborhood. Complicated structures, e.g., our time-aware attentional network, are unable to
demonstrate their superiority in this case.

Datasets ICEWS14-OOG ICEWS18-OOG

MRR H@1 H@10 MRR H@1 H@10
Model 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

A1 .267 .302 .195 .220 .407 .462 .187 .261 .128 .181 .315 .408
A2 .271 .285 .203 .217 .403 .454 .188 .265 .129 .187 .316 .411
A3 .276 .306 .206 .235 .401 .471 .189 .265 .125 .185 .316 .415

B1 .243 .256 .171 .179 .361 .402 .184 .238 .122 .162 .314 .383
B2 .258 .281 .181 .196 .393 .432 .185 .240 .119 .165 .316 .388
B3 .249 .278 .177 .179 .389 .438 .183 .242 .116 .166 .314 .395
B4 .263 .284 .192 .195 .400 .450 .181 .245 .112 .174 .307 .393

FILT .278 .321 .208 .240 .410 .475 .191 .266 .129 .187 .316 .417

Table 3: Ablation studies of FILT on ICEWS14-OOG and ICEWS18-OOG. H@1/3/10 denote
Hits@1/3/10, respectively. The best results are marked in bold.

5.5 Further Analysis

Cross shot analysis. We evaluate our trained 3-shot and 1-shot models with varying shots (1,3
or 5-shot) during meta-test. We observe in Table 4 that for both trained models, the performance
increases as the test shot size rises. This is due to the effectiveness of our time-aware graph
encoder. It distinguishes the importance of different support quadruples and better incorporates graph
information as the shot size increases. We also observe that when the test shot size is larger than 3,
FILT trained with 3 shots performs better than it trained with 1 shot. This is because during 3-shot
meta-training, we simulate that for every unseen entity, 3 support examples are observable, which
helps the model to generalize to the cases where their shot sizes are larger than 1 during meta-test.
Besides, test with random shots does not greatly affect our model performance, thus showing FILT’s
robustness.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

(Train) 1-shot (Train) 3-shot (Train) 1-shot (Train) 3-shot (Train) 1-shot (Train) 3-shot

Test Shots MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

1-shot .278 .208 .410 .265 .195 .386 .191 .129 .316 .178 .117 .305 .273 .201 .405 .258 .184 .399
3-shot .293 .212 .452 .321 .240 .475 .232 .158 .381 .266 .187 .417 .331 .254 .482 .370 .299 .516
5-shot .297 .212 .467 .322 .231 .503 .256 .183 .400 .289 .206 .449 .351 .275 .499 .394 .317 .553
R-shot .283 .203 .440 .299 .214 .462 .224 .154 .364 .242 .167 .390 .315 .240 .460 .337 .262 .490

Table 4: Cross shot analysis results. R-shot denotes the setting that we randomly sample 1, 3 or
5 support quadruples for every unseen entity during meta-test. H@1/3/10 denote Hits@1/3/10,
respectively.
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Visualization of concept representations. We plot the trained concept representations of the 3-shot
model on ICEWS18-OOG with t-SNE [Van der Maaten and Hinton, 2008]. The entity concepts in
the ICEWS database are hierarchical. For example, under the concept Government, there exist other
concepts, e.g., Foreign Ministry. We only create labels for the first hierarchy concepts and assign other
concepts belonging to them with the same label. From Figure 3, we can observe that the concepts
bearing the same label tend to form a cluster, and the clusters having similar semantic meanings
tend to be close to each other, e.g., the clusters of Parties and Government. This demonstrates that
our concept modeling component learns the semantics of entity concepts, which helps to improve
inductive learning for unseen new entities. We present three case studies in Appendix G.

Figure 3: Visualization of learned concept representations on 3-shot ICEWS18-OOG.

6. Conclusion

We propose a new task: temporal knowledge graph (TKG) few-shot out-of-graph (OOG) link
prediction, aiming to introduce the inductive entity representation learning problem into TKGs.
We develop a model that focuses on the few-shot inductive learning on TKGs (FILT). Given only
few edges associated to each newly-emerged entity, FILT employs a meta-learning framework that
enables inductive knowledge transfer from seen entities to new unseen entities. FILT uses a time-
aware graph encoder to learn the contextualized representations of unseen entities, which shows
stronger performance as the shot size increases. It also utilizes the external entity concept information
specified in the temporal knowledge bases. We propose three new datasets for TKG few-shot OOG
link prediction and compare FILT with several baselines. Experimental results show that learning
concept-aware information improves inductive learning for emerging entities. In the future, we would
like to generalize rule-based knowledge graph reasoning methods to the TKG inductive learning
scenario. Another direction is to combine future link prediction with our proposed TKG few-shot
OOG link prediction task since our task currently does not support link forecasting.
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Appendix A. Long-Tail Distribution of Entities in Temporal Knowledge Bases

Figure A illustrates the entity occurrence of ICEWS14, ICEWS18 and ICEWS05-15 databases. We
find that most entities occur for only a few times.

Figure 4: Entity occurrence of ICEWS14, ICEWS18 and ICEWS05-15 databases.
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Appendix B. Evaluation Metrics

We use two evaluation metrics for our experiments, i.e., mean reciprocal rank (MRR) and Hits@1/3/10.
For every link prediction query, we compute the rank ψ of the ground truth missing entity. MRR
is defined as: 1∑

e′∈E′
meta-test

|Qe′ |
∑

e′∈E ′
meta-test

∑
q+∈Qe′

1
ψ . Hits@1/3/10 denote the proportions of the

predicted links where ground truth missing entities are ranked as top 1, top3, top10, respectively.

Appendix C. Implementation Details

We implement all the experiments with PyTorch [Paszke et al., 2019] on a single NVIDIA Tesla T4.
We search hyperparameters following Table 5. For each dataset, we do 108 trials to try different
hyperparameter settings. We run 15000 batches for each trail and compare their meta-validation
results. We choose the setting leading to the best meta-validation result and take it as the best
hyperparameter setting. We report the best hyperparameter setting in Table 6. Every result of our
model is the average result of five runs. For the models leading to the results reported in Table 2, we
provide their meta-validation results in Table 7. We also specify their GPU memory usage (Table
8) and number of parameters (Table 9). For different datasets, we use different numbers of unseen
entities N in each meta-training task T . We set N = 100 for ICEWS14-OOG and ICEWS0515-
OOG, N = 200 for ICEWS18-OOG. We sample 32 negative samples for every positive sample.

Hyperparameter Search Space

Embedding Size {50, 100, 200}
# Aggregation Step {1, 2}
Activation Function {Tanh, ReLU, LeakyReLU}
Dropout {0.2, 0.3, 0.5}
λ {0.2, 0.4}

Table 5: Hyperparameter searching strategy.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

Hyperparameter

Embedding Size 100 100 100
# Aggregation Step 1 1 1
Activation Function LeakyReLU LeakyReLU LeakyReLU
Dropout 0.3 0.3 0.3
λ 0.2 0.4 0.4

Table 6: Best hyperparameter settings.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
Model 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

FILT .251 .354 .171 .271 .285 .389 .410 .511 .187 .242 .127 .163 .204 .264 .308 .406 .232 .316 .163 .229 .247 .350 .378 .491

Table 7: TKG 1-shot and 3-shot OOG link prediction results on the meta-validation set. Evaluation
metrics are filtered MRR and Hits@1/3/10 (H@1/3/10).

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

GPU Memory GPU Memory GPU Memory
Model 1-S 3-S 1-S 3-S 1-S 3-S

FILT 1493MB 1466MB 1871MB 1841MB 1557MB 1541MB

Table 8: GPU memory usage.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

# Param # Param # Param
Model 1-S 3-S 1-S 3-S 1-S 3-S

FILT 2966303 2966303 4567203 4567203 3310703 3310703

Table 9: Number of parameters.
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For baseline methods, except MEAN, we use their official implementations, i.e., ComplEx2,
BiQUE3, TNTComplEx4, TeLM5, TeRo6, LAN7, GEN8. We use the MEAN implementation provided
in the LAN repository. We use default hyperparameters of TKGC methods for ICEWS datasets. For
other methods, we keep their embedding size the same as FILT’s. We keep other hyperparameters of
them as their default settings.

Appendix D. Further Discussion of TKG Few-Shot OOG Link Prediction

Figure 5 illustrates how we formulate TKG few-shot OOG link prediction into a meta-learning prob-
lem with an example. Green edges correspond to the support quadruples and orange edges correspond
to the query quadruples (timestamps and relations are omitted for brevity). The meta-training process
consists of a number of meta-training tasks. During each meta-training task T , N unseen entities
from E ′

meta-train are randomly sampled. In Figure 5, e′1, e
′
2 ∈ E ′

meta-train are sampled in task T . For
each sampled unseen entity, K (K = 1 in Figure 5) quadruples from all the quadruples containing
itself are sampled to form its support set. The rest form its query set. During meta-validation, all
the unseen entities (e′5, e

′
6, e

′
7, e

′
8) from E ′

meta-valid are treated as appearing simultaneously, which also
applies to meta-test and the unseen entities (e′9, e

′
10, e

′
11, e

′
12) from E ′

meta-test.

Figure 5: Illustration of the meta-learning framework formulated from the TKG few-shot OOG link
prediction task.

TKG few-shot OOG link prediction vs. TKG completion. For the existing TKGC benchmark
datasets, e.g., ICEWS149, there exist a number of entities that only appear in the test sets (or the

2. https://github.com/ttrouill/complex
3. https://github.com/guojiapub/BiQUE
4. https://github.com/facebookresearch/tkbc
5. https://github.com/soledad921/TeLM
6. https://github.com/soledad921/ATISE
7. https://github.com/wangpf3/LAN
8. https://github.com/JinheonBaek/GEN
9. https://github.com/BorealisAI/de-simple
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validation sets) and are unseen in their training sets. Evaluating on the links concerning these unseen
entities coincides to the evaluation setting of TKG few-shot OOG link prediction. However, in our
proposed task, we focus on the unseen entities that are long-tail, and we also introduce a realistic
setting that each unseen entity is coupled with K support quadruples containing itself, while in
traditional TKGC benchmark datasets the unseen entities are not guaranteed to be long-tail and no
associated edge is given for learning the inductive representations of them. The aim of TKG few-shot
OOG link prediction is to ask the TKG reasoning models to learn strong representations of the unseen
entities inductively from extracting the information from the provided K support quadruples, which
corresponds to the realistic situation where every newly-emerged entity is often coupled with a small
number of associated edges.

Appendix E. Ablation Study Details

We present the detailed equations of graph encoder variants (B1-B3 in Table 3, B4 already presented).
In B1, RGCN computes the unseen entity e′’s representation as:

h(e′,tq) =
1

|Ne′ |
∑

(ẽi,ri,ti)∈Ne′

Wri(hẽi), (6)

where Wri is a weight matrix modeling ri. In B2, Time2Vec computes e′’s representation as:

h(e′,tq) =
1

|Ne′ |
∑

(ẽi,ri,ti)∈Ne′

Wg(h(ẽi,ti)∥hri), (7)

where h(ẽi,ti) is defined as:

h(ẽi,ti) = f(hẽi∥Φ(ti)),

Φ(ti)[j] =

{
ωjti + φj , if j = 0,

sin(ωjti + φj), if 1 ≤ j ≤ dt.

(8)

f denotes a layer of feed forward neural network. Φ(ti)[j] denotes the jth component of ti’s time
representation Φ(ti). dt is the dimension size of time representations. ωj and φj represent the
trainable frequency and phase parameters, respectively. In B3, we use the same aggregation function
7 as in Time2vec, however, we use another form of time encoder to encode time information:

h(ẽi,ti) = f(hẽi∥Φ(ti)),

Φ(ti) =

√
1

dt
[cos(ω1ti + φ1), . . . , cos(ωdtti + φdt))],

(9)

where ω1 . . . ωdt and ϕ1 . . . ϕdt are trainable parameters.

Appendix F. Concept Extraction of ICEWS Database

We take the sectors of ICEWS entities as their concepts. The sector classification can be found on
the ICEWS official website10. ICEWS sectors have hierarchies. We do not consider hierarchies and

10. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/28118
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consider each sector as individual. For example, the sector Foreign Ministry belongs to the sector
Government. We learn their representations separately.

A number of entities in the ICEWS coded event data are not labeled with any sector. Some of
them are regions, e.g., North Korea. We create a new sector named Region for them. For other entities,
we find their affiliations and pick out their sectors. We then choose from their affiliations’ sectors the
most suitable ones and label these entities. For example, European Parliament has no associated
sector in the ICEWS coded event data. We find its affiliation European Union. European Union
is assigned a sector Regional Diplomatic IGOs. We take Regional Diplomatic IGOs as European
Parliament’s sector and it is taken as a concept in our meta-learning process.

Appendix G. Case Study of Learned Concept Representations

We further find three cases to show that our learned concept representations capture the semantic
meaning of concepts, which helps to embed unseen entities inductively. We resize the visualization
in Figure 3 and label several concepts close to each other.

The first case is about the concepts Foreign Ministry, International Government Organization and
Regional Diplomatic IGOs, where IGO stands for international government organization. From hu-
man intuition, Foreign Ministry is closely related to international interactions. Similarly, international
Government Organization and Regional Diplomatic IGOs also possess the same semantics.

The second case is about the concepts International Ethnic, International Religious and Muslim.
Muslim stands for not only a religion but also an ethnicity, therefore, it is close to both International
Religious and International Ethnic.

The third case is about the concepts Medical / Health NGOs, Human Rights NGOs and Human
Rights IGOs, where NGO stands for nongovernmental organizations. We can observe that Human
Rights NGOs and Human Rights IGOs are extremely close to each other. Since protecting human
rights is normally concerned with providing medical aid, they are also close to Medical / Health
NGOs.

Appendix H. Dataset Construction Process

1. We take ICEWS1411, ICEWS1812 and ICEWS05-1513 as the databases for dataset construc-
tion.

2. We set the upper and lower thresholds for entity frequencies. We do not want the upper
threshold to be large since in real-world scenarios, newly-emerged entities normally are only
coupled with very few edges. We also do not want the lower threshold to be too small since
we want to include enough test examples. We set the upper and lower threshold to 10 and 25
for every dataset.

3. We pick out the entities whose frequencies are between thresholds and sample half of them
as the total unseen entities E ′ (following [Baek et al., 2020]). We take the quadruples without
any unseen entity as the background graph Gback.

11. https://github.com/BorealisAI/de-simple
12. https://github.com/INK-USC/RE-Net
13. https://github.com/mniepert/mmkb/tree/master/TemporalKGs
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Figure 6: Resized visualization of learned concept representations on 3-shot ICEWS18-OOG.
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4. We split the unseen entities as meta-training E ′
meta-train, meta-validation E ′

meta-valid and meta-
test E ′

meta-test entities. |E ′
meta-train| : |E ′

meta-valid| : |E ′
meta-test| ≈ 8 : 1 : 1. Their associated

quadruples form the corresponding meta-learning sets.
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