
Automated Knowledge Base Construction (2022) Conference paper

Entity-Centric Query Refinement

David Wadden1∗ dwadden@cs.washington.edu

Nikita Gupta2 gnikita@google.com

Kenton Lee2 kentonl@google.com

Kristina Toutanova2 kristout@google.com
1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Google Inc.

Abstract
We introduce the task of entity-centric query refinement. Given an input query whose

answer is a (potentially large) collection of entities, the task output is a small set of query
refinements meant to assist the user in efficient domain exploration and entity discovery.
We propose a method to create a training dataset for this task. For a given input query,
we use an existing knowledge base taxonomy as a source of candidate query refinements,
and choose a final set of refinements from among these candidates using a search procedure
designed to partition the set of entities answering the input query. We demonstrate that
our approach identifies refinement sets which human annotators judge to be interesting,
comprehensive, and non-redundant. In addition, we find that a text generation model
trained on our newly-constructed dataset is able to offer refinements for novel queries not
covered by an existing taxonomy. Our code and data are available at https://github.

com/google-research/language/tree/master/language/qresp.

1. Introduction

During interactive search, the system user may issue queries that are under-specified, am-
biguous, or open-ended. For instance, a user interested in finding a new movie might search
for “Action films”, or a computer vision researcher interested in learning more about NLP
might search for “Pretrained NLP models”. These forms of interaction are examples of
exploratory search [Marchionini, 2006, White and Roth, 2009].

We focus specifically on queries whose answer is a list of entities, known as list-intent
queries. For example, “Rush Hour” is one of the thousands of answers to the query “Action
films”. List-intent queries are common, comprising 10% of all web searches [Chakrabarti
et al., 2020]. However, simply displaying the answer to such a query (e.g. a list of all action
films) is more likely to cause confusion than to satisfy the user’s information needs. Instead,
systems for query refinement – also known as query recommendation or query suggestion
[Sordoni et al., 2015, Baeza-Yates et al., 2004] – can assist users by offering a set of followup
queries that clarify and focus the user’s search, progressively drilling down on the topics
and entities of most interest (Fig. 1).

With this motivation in mind, we propose the task of entity-centric query refinement.
The task input is a list-intent query. The task output is a collection of k query refinements,
referred to as a refinement set. The refinement set should provide a reasonably comprehen-
sive overview of the set of entities answering the input query. For instance, Fig. 1b shows
an example of k = 4 refinements that could familiarize the system user with some common
types of pretrained NLP models, and point the user in interesting new search directions.

∗. Work primarily completed while interning at Google.

1

https://github.com/google-research/language/tree/master/language/qresp
https://github.com/google-research/language/tree/master/language/qresp

Wadden, Gupta, Lee & Toutanova

Martial arts filmsAction comedy films

Superhero filmsAction thriller films

Action films

(a) A query paired with a refinement
set consisting of k = 4 query subtypes
available in an existing knowledge base.

Pretrained Seq2Seq modelsPretrained encoders

Pretrained word embeddingsPretrained language models

Pretrained NLP models

(b) Refinements for a query unlikely to be covered
by existing taxonomies, generated by a text-to-text
model.

Figure 1: Examples of the entity-centric query refinement task. We propose a method to
select high-quality refinement sets for queries covered by an existing taxonomy (Fig. 1a),
and use these refinement sets to train a model which can generate refinements for queries
unlikely to be covered by any taxonomy (Fig. 1b).

To our knowledge, no datasets are available which provide instances of list-intent queries
paired with refinement sets satisfying our task goals. Therefore, we propose a method to
create query / refinement set pairs which can be used to train a model for this task. We
leverage the YAGO3 [Mahdisoltani et al., 2015] knowledge base, using YAGO entity types as
training queries. YAGO types are based on the Wikipedia category system, which provides
a rich, crowdsourced taxonomy of real-world entity types. Given a YAGO type, we consider
all subtypes in the taxonomy as potential refinements (Fig. 1a shows an example). We pro-
pose a method Query Refinement via Entity Space Partitioning (QRESP), which selects as
refinements the k subtypes which provide the most comprehensive and non-redundant sum-
mary of the entities answering the input query. In head-to-head comparisons, we find that
human annotators prefer refinement sets chosen using our proposed method over refinement
sets consisting of k randomly-chosen subtypes of the input query.

We use the resulting dataset to train a T5 model [Raffel et al., 2020] capable of generating
a refinement set for any input query. Since no evaluation dataset is available, we perform
comparisons on both in-domain queries (held-out categories from the YAGO taxonomy) as
well as out-of domain queries selected from Natural Questions [Kwiatkowski et al., 2019]
and the TREC 2009 Million Query Track [Carterette et al., 2009]. We find that the outputs
of a model trained on QRESP refinement sets are preferred over the outputs of a model
trained on random query subtypes, suggesting that the properties captured by QRESP are
generalizable to new queries. However, we also find that our models sometimes predict off-
topic or irrelevant refinements, particularly on queries from Natural Questions and TREC.
This points toward the need for future work to improve the reliability of refinement systems
under domain shift, and to develop automated metrics of refinement quality which can be
used to speed up the model development process.

In summary, our contributions are threefold: (1) We introduce the task of entity-centric
query refinement, and outline key desiderata and evaluation criteria for this task. (2)
We propose QRESP, which optimizes an entity-centric cost function to select refinement
sets for queries covered by an existing knowledge base. The resulting refinement sets can
be used both for entity exploration within the knowledge base, and as instances to train
a refinement set generation model. (3) We develop a baseline model trained on instances
selected by QRESP to generate refinement sets for queries unseen during training, and identify
important areas for future work on this task based on analysis of our system outputs.

2

Entity-Centric Query Refinement

2. Task definition

2.1 Entity-centric query refinement
Martial arts films

Superhero films

 Action comedy films

 Action
 thriller
 films

Swashbuckler
films

Buddy
cop
films

Action films

Pirates of the CaribbeanRush Hour

Figure 2: An entity-space view of
a refinement set for the query “Ac-
tion films”. Rectangles indicate re-
finements, and black circles indicate
entities. The four rectangles with
solid borders correspond to the re-
finements in Fig. 1. The rectangles
with dashed borders show two sub-
genres that were not included in the
refinement set, since they are redun-
dant / do not cover many films. The
four selected refinements approxi-
mately partition the answer space.

We aim to generate refinements which facilitate ex-
ploration and discovery for list-intent queries, helping
the user drill down on entities of interest. Formally,
the task input is a query q whose answer is a list of
entities. Equivalently, the query q specifies an entity
type. We refer to the list of entities answering q as the
answers to q, or A(q). The task output is a collection
of k refinements1 R(q) = {q′1, . . . , q′k}. We refer to
R(q) as a refinement set, or “RS”. Each refinement
q′i should itself be a list-intent query. In addition,
each answer to q′i should be among the answers to q:
A(q′i) ⊆ A(q). In other words, each q′i should specify
a subtype of q. For instance, every movie that is an
answer to the refinement “martial arts films” is also
an answer to the input query “action films”.

2.2 Desiderata for refinement sets

The query refinement task is inherently open-ended,
and there may be many reasonable RSs (refinement sets) for any given query. Inspired by
prior work on faceted search interfaces for the Wikipedia category taxonomy [Li et al., 2010],
we conceptualize refinement generation from the standpoint of entity discovery : given an
input query q, can we design a refinement system such that any entity e∗ ∈ A(q) is dis-
coverable after a few rounds of system interaction? From this standpoint, the best-possible
refinement set would partition the entities A(q) into k disjoint, equally-sized subsets, such
that each answer ej ∈ A(q) is an answer to exactly one refinement q′i ∈ R(q). This would
ensure that any entity in A(q) is discoverable after at most logk(|A(q)|) refinements, since
the refinements would induce a k-ary search tree over the entities answering q (see Appendix
A.1). We refer to such a refinement set as ideal.

Query: Action films

Refinement Fluent Relevant

Martial arts films ✓ ✓

Romance films ✓ ✗

Martially flims arts of ✗ ✗

Table 1: Stage 1 evaluation screens
out individual refinements which are
not fluent and relevant.

In practice, it will almost never be possible to
generate an ideal RS, since each refinement must
specify a semantic category expressed in natural
language. Fig. 2 provides an example showing how
the refinements for the query “action films” from
Fig. 1 provide a good approximation to an ideal
RS. We formalize this notion in §3.

2.3 Evaluation criteria

Efficient entity discovery provides motivation for our task formulation, but does not admit a
simple evaluation strategy. Therefore, to assess the usefulness of proposed refinement sets,

1. In this work, we provide k as a model input; dynamically choosing k based on the query represents an
important future research direction.

3

Wadden, Gupta, Lee & Toutanova

Query: Action films

Refinement set Compre-
hensive

Inter-
esting

Non-
redundant

1 Action comedies, Action thrillers, Martial arts films, Spy films ✓ ✓ ✓

2 Action films set in {Asia, North America, Africa, Europe} ✓ ✗ ✓

3 Karate films, Kung Fu films, Boxing films, Films with boxing ✗ ✓ ✗

Table 2: Stage 2 evaluation assesses the overall quality of refinement sets. The notation
“{Asia, North America, . . . }” means “Action films set in Asia, Action films set in North
America, . . . ”. Row (2) is comprehensive since many action films take place on one of
the listed continents, but is not interesting since many different kinds of queries can be
categorized by continent. Row (3) is redundant and not comprehensive since it only covers
martial arts movies, and repeats “boxing films”. Human evaluation makes comparisons
between two refinement sets, rather than binary ✓/ ✗ decisions for a single set; we show
binary decisions for illustration.

we conduct A / B tests where annotators compare two competing refinement sets RA(q)
and RB(q) on a number of attributes. The evaluation includes two stages.

Stage 1: Validity of individual refinements First, the annotator confirms that the
individual refinements making upRA(q) andRB(q) conform to the task definition, requiring:

1. Fluency: Each refinement must be fluent and grammatical.
2. Relevance: Each refinement must specify a subtype of q. Non-fluent refinements are

automatically judged as not relevant.

Table 1 provides some examples of queries that pass and fail these requirements. If
fewer than half of the refinements from either RS satisfy the criteria, annotation stops here.
In our experiments (§5), we find that virtually all refinements are fluent, and the Stage 1
screen serves in practice to filter out irrelevant refinements.

Stage 2: Overall refinement set quality If the majority of refinements in both RA(q)
and RB(q) are judged valid, the annotator compares the two RSs, based on four attributes:

1. Comprehensiveness: Does R(q) provide a good overview of the entities answering the
query q?

2. Interestingness: Do the refinements in R(q) provide new information about the differ-
ent kinds of entities answering q, or are they generic and uninteresting?

3. Non-redundancy: Does each refinement in R(q) specify a unique entity type, or are
some of them redundant?

4. Overall usefulness: Overall, how useful are the refinements R(q) for learning more
about the entities answering q?

Table 2 provides examples. For each attribute, the annotator selects whether RA is
better, RB is better, or whether the two RSs are equally good. Details of the annotation
process are provided in §4.2. The full annotation guide is included in Appendix G.

4

Entity-Centric Query Refinement

3. Refinement set selection

To build a baseline system for RS generation, we proceed as follows: (1) Leverage an existing
knowledge base to create a collection of query / RS pairs that are close to ideal, and (2)
Train a text-to-text model on this collection, with the goal of generalizing to queries not
covered by a taxonomy. We describe (1) in this section and §4, and describe (2) in §5.

Source taxonomy We use the YAGO3 taxonomy [Suchanek et al., 2007, Mahdisoltani
et al., 2015] (referred to simply as YAGO) as our source to construct a training dataset. The
YAGO entity type system is adopted from the Wikipedia category system, a crowdsourced
polyhierarchy used to organize Wikipedia pages. We use types in the YAGO taxonomy as
input queries q. Given a type q, we consider all sub-types of q in the taxonomy as refinement
candidates, denoted C(q). From this collection of K candidates, we aim to select k sub-types
to form our refinement set R(q). We use the entities in the YAGO knowledge base that are
instances of type q as the answers to q, or A(q). As a concrete example, in Fig. 2, “Action
films” is the query q, the shaded rectangles correspond to members of the candidate set
C(q), and the black points are two answers in A(q).

Even when a list of K candidate subtypes is available, selecting the best k refinements
is challenging because (1) K may be large; for example, there are 68 subtypes of the type
“Action films”, (2) Many of the candidate subtypes may be too specific to be part of a
useful summary (e.g. “Tomb Raider films” is a subtype of “Action films”; Appendix B.2
provides additional examples), and (3) subtypes may be redundant, overlapping, or generic.

QRESP for refinement selection To select an RS of k refinements from among the K can-
didate subtypes associated with a given input query, we propose QRESP: Query Refinement
via Entity Space Partitioning. We define a cost function which selects RSs according to
the desiderata described in §2.2, rewarding RSs whose answers approximately partition the
answers to the original query. Then, we minimize this cost function over all refinement sets.

Let ej denote a particular entity in A(q), and let n = |A(q)|. Given a pool of candidate
refinements C(q), let R(q) indicate the collection of all size-k subsets of C(q). Given a
possible refinement set R(q) ∈ R(q), and a refinement q′i ∈ R(q), let aij = 1 [ej ∈ A(q′i)].

Define cj =
∑k

i=1(aij), the number of refinements in R(q) for which entity j is an answer.
Let ni =

∑n
j=1(aij) = |A(q′i)|, the number of entities that answer refinement i. Then we

define a cost function S measuring the quality of a given R(q), and minimize over R(q):

S(R(q)) =

 n∑
j=1

|cj − 1|

− min
i∈{1,...,k}

ni (1) R∗(q) = argmin
R(q)

S(R(q)). (2)

The first term in Eq. 1 is minimized when each answer to q is an answer to exactly one
of the q′i, encouraging comprehensiveness and non-redundancy. The second term encourages
the smallest refinement to have as many answers as possible. Combined with the first term,
this rewards the selection of refinements which all have a similar number of answers.

Eq. 2 selects the refinement set R∗(q) minimizing Eq. 1. In Appendix A.2, we provide a
proof that the RS selected by QRESP is the best achievable in the following sense: the scoring
function S(R(q)) achieves its global minimum if and only if R(q) is ideal as defined in §2.2.
Thus, selecting refinements according to QRESP yields the RS that is closest to ideal, given
the subcategories C(q) available in YAGO. We use integer linear programming to perform
the combinatorial optimization over R(q) in Eq. 2; see Appendix A.3 for details.

5

Wadden, Gupta, Lee & Toutanova

Query: Action films

DQRESP {Action comedy, Action thriller, Martial arts, Science fiction action, Spy} films

DRandom {1910s, 1920s, Australian, Brazilian, Nigerian} action films

DRandom-F {Action comedy, Action thriller, Animated action,
The purge} films, Action films based on actual events.

Table 3: Refinement sets from DQRESP, DRandom, and DRandom-F. DRandom includes many
refinements based on a time period or a country of origin, which does not provide interesting
new information about the topic. DRandom-F is overly specific (e.g. “The Purge films”), and
thus does not provide as good an overview as DQRESP.

4. A dataset for entity-centric query refinement

We apply QRESP to YAGO to create a dataset for entity-centric query refinement, and
conduct A / B tests to assess whether our approach aligns with human judgments. We
set the number of refinements to k = 5 for all experiments; this is large enough to enable
diverse refinement sets, but not so large as to be overwhelming for users.

4.1 Dataset creation

We apply QRESP to select RSs from the YAGO taxonomy. We use YAGO types with at
least 50 answer entities as our training queries, as it may be difficult to select non-trivial
refinements for types with only a few answers. Given a type q with candidate subtypes
C(q), we use rule-based filters to remove candidates that differ from q only by the addition
of a date, location, or a gender (e.g. “singers” → “female singers”), as these tend to lead
to generic refinements (see Appendix B.5 for the full list of rules). We refer to the filtered
collection as CFilter(q). Queries with fewer than k subtypes post-filtering are removed. For
the remaining queries, we apply QRESP to the candidates CFilter(q) to select refinements
RQRESP(q). We call the resulting dataset DQRESP = (qi,RQRESP(qi))

N
i=1. We also construct two

ablation datasets for comparison. For DRandom, we select refinements by randomly choosing
k subtypes from C(q), without filtering. For DRandom-F, we choose k random subtypes from
CFilter(q). Table 3 and Appendix B.2 provide examples. In Appendix B.6, we present results
confirming that RSs selected using QRESP consistently achieve lower costs as measured by
Eq. 1, compared to randomly-chosen RSs. Our training dataset consists of 8, 958 query /
RS instances for DQRESP and DRandom-F, and 17, 598 instances for DRandom.

We hold out 282 query / RS instances to be used for model development in §5. Develop-
ment queries and their subtypes are excluded from the train set. We select dev set queries
by randomly sampling YAGO types with at least 15 subtypes, each of which must have
at least 200 answer entities. We use categories with many subtypes and answers because
these are the categories for which query refinement has the most potential to facilitate user
exploration and discovery. From our development set, we manually select a collection of
105 examples to be used for human evaluation in A / B tests. We select a diverse set of
interesting, open-ended queries across a variety of domains, intended to mirror the types
of queries likely to be seen in real-world use. Appendix B includes a discussion of all data
selection and preprocessing choices, as well as additional statistics on YAGO. Appendix F
includes the full list of queries used for human evaluation.

6

Entity-Centric Query Refinement

A = QRESP vs. B = Random A = QRESP vs. B = Random-F

N = 105 A Neutral B A Neutral B

Stage 1 Fluent + Relevant 98% - 97% 100% - 100%

Stage 2

Comprehensive 88%∗∗ 10% 2% 75%∗∗ 15% 10%
Interesting 71%∗∗ 26% 3% 64%∗∗ 24% 12%
Non-redundant - - - - - -
Overall 86%∗∗ 10% 4% 73%∗∗ 17% 10%

Table 4: A / B tests comparing refinement sets from DQRESP against DRandom (left) and
DRandom-F (right). N indicates the number of annotated instances. For Stage 1 evaluation,
we report the percentage of refinement sets from each system that passed the Stage 1 screen.
For Stage 2 evaluation, we report the percentage of queries for which annotators preferred
refinements from System A vs. System B. The “non-redundant” evaluation was added after
these tests were performed, and is left blank. ∗∗ indicates significance at p < 0.001.

4.2 Human evaluation

We compare refinements from RQRESP with refinements chosen randomly, RRandom. In ad-
dition, we compare RQRESP to RRandom-F, to confirm that the improved ratings are due to
selection using QRESP, and not simply the filtering out of uninteresting candidates. Details
on the annotation process are included in Appendix C.

A / B test results are shown in Table 4. We perform statistical significance tests for all
human comparisons; see Appendix D for details on the statistical procedures used. More
than 97% of RSs from all approaches pass the Stage 1 screen for relevance and fluency. This
is expected, since the refinements for training queries come from the YAGO taxonomy. In
Stage 2, RSs selected by QRESP are preferred by annotators 86% of the time over random RSs,
and 73% of the time over random RSs post-filtering. RQRESP is preferred more frequently
for comprehensiveness than for interestingness, likely because Eq. 1 explicitly rewards
comprehensiveness. Overall, the results indicate that QRESP captures human intuitions
about refinement quality.

5. Refinement generation

Having established that QRESP selects high-quality refinement sets for queries covered by a
knowledge base, we finetune a pretrained language model to generate refinements for queries
not found in the KB. We experiment with two evaluation datasets: held-out categories from
the YAGO taxonomy, and a collection of list-intent queries selected from Natural Questions
[Kwiatkowski et al., 2019] and the TREC 2009 Million Query Track [Carterette et al., 2009].

5.1 Model

We use T5-3B [Raffel et al., 2020] as our base model. Given a datasetD consisting of training
pairs (qi,R(qi))

N
i=1, we provide q as the input for T5 and train it to generate R(q). We

format R(q) by concatenating the individual refinements in alphabetical order, separated
by a sentinel token. At prediction time, we provide q as input and greedily decode (greedy
outperformed sampling and beam search on automated metrics). We train models onDQRESP,
DRandom-F, and DRandom; we call these MQRESP , MRandom-F, and MRandom, respectively.
We train with a batch size of 32 for 8000 steps, using the default T5 optimizer.

7

Wadden, Gupta, Lee & Toutanova

Model
Sequence Set

Perplexity
BLEU ROUGE-L P R F1

MQRESP 67.1 69.4 24.8 24.3 24.6 2.01

MSeparate 66.9 68.2 19.6 19.2 19.4 2.35
MRandom-F 61.5 66.0 15.1 14.3 14.7 2.11
MRandom 57.6 63.8 6.8 6.7 6.8 2.19

Table 5: Automated evaluation of generation models, using DQRESP as “silver” evaluation
targets. Evaluations are categorized into Sequence-based, Set-based, and Perplexity-based.
MQRESP outperforms models trained on randomly-chosen refinements, or trained to generate
refinements separately rather than as a single sequence.

As an additional ablation, we train a model MSeparate on DQRESP, which predicts a single
refinement q′i at a time, rather than predicting a full refinement set R(q). At prediction
time, given an input q, we sample 5 separate predictions from MSeparate and concatenate
to form R(q); a similar approach is used by MacAvaney et al. [2021] to generate possible
query intents for search result diversification.

5.2 Automated evaluations

The results of §4 indicate that human annotators prefer refinements from DQRESP over those
from DRandom and DRandom-F. Therefore, for our automated evaluations, we treat RSs from
the DQRESP dev set as “silver” data against which to evaluate the predictions of our trained
models. We evaluate using the following metrics:

1. Sequence-based metrics: We treat a generated RS as a text sequence with no addi-
tional structure, and compare it to the corresponding silver RS using BLEU and ROUGE-
L (ROUGE-1 and -2 showed the same trend).

2. Set-based metrics: We treat the generated RS as a set of k refinements, and evaluate
the precision, recall, and F1 relative to the set of silver refinements.

3. Perplexity: We evaluate the perplexity of the silver RSs, formatted as a sequence,
under each generation model.

The results are shown in Table 5. MQRESP performs best on all metrics. Training on
randomly-chosen candidate subtypes (MRandom-F and MRandom) decreases performance,
particularly as measured by F1. We also observe that sequential refinement set generation
by MQRESP outperforms separate prediction of individual refinements by MSeparate. We
examine the reasons for this improvement in §5.3.

5.3 Human evaluation

We conduct A / B tests on two datasets. First, we evaluate on the (in-domain) human
evaluation set of YAGO types described in §4.1. Second, to measure the ability to generalize
to out-of-domain queries, we evaluate on 93 real-world list-intent queries selected by one of
the paper authors from the Natural Questions dataset and the TREC 2009 Million Query
Track (referred to as NQ+TREC). As with YAGO, we aimed to select exploratory, list-intent
queries on a variety of topics. Appendix F includes the full list of NQ+TREC queries, and
Appendix E.1 includes a discussion of our query selection criteria.

8

Entity-Centric Query Refinement

Query: Physicians

MQRESP Alternative medicine physicians, cardiologists, der-
matologists, ophthalmologists, psychiatrists

MRandom {Canadian, German, Norwegian} dermatologists, Pediatricians, Women physicians

MRandom-F Fictional physicians, Oncologists, Psychiatric physicians, Radiologists, surgeons

MSeparate {Atheist, Baritone, Fictional, Military} physicians, Neurologists

Table 6: Refinements of MQRESP and three ablations on a YAGO evaluation query. The
MQRESP suggestions cover 5 common types of physicians. In contrast, some ablation refine-
ments are generic (Canadian dermatologists) or idiosyncratic (Fictional physicians).

A = QRESP vs. B = Random A = QRESP vs. B = Separate

N = 105 A Neutral B A Neutral B

Stage 1 Fluent + Relevant 93% - 100%∗ 93% - 95%

Stage 2

Comprehensive 77%∗∗ 12% 11% 47% 20% 33%
Interesting 70%∗∗ 22% 8% 28% 45% 27%
Non-redundant 22% 66% 12% 42%∗∗ 45% 14%
Overall 76%∗∗ 17% 7% 46%∗ 26% 28%

Table 7: Results of A / B tests on the YAGO human evaluation set. MQRESP is preferred
over both ablations. ∗ and ∗∗ indicate significance at p < 0.05 and p < 0.001, respectively.

A = QRESP vs. B = Random

N = 93 A Neutral B

Fluent +
Relevant 56% - 81%∗∗

Comprehensive 45% 30% 26%
Interesting 40% 34% 26%
Non-redundant 23% 51% 26%
Overall 43% 28% 30%

Table 8: Human evaluations on
NQ+TREC. MQRESP refinements tend
to be more interesting and comprehensive,
provided that they are relevant. ∗∗ indi-
cates p < 0.001.

Results on YAGO We compare refine-
ments fromMQRESP againstMRandom,MRandom-F

and MSeparate. Table 6 shows the predictions
of each system on a single query. Table 7 shows
the results of A / B tests comparing MQRESP

against MRandom and MSeparate; results for
MRandom-F are similar to MRandom and are
included in Appendix E.2.

Compared to MRandom, refinements from
MQRESP are much more likely to be comprehen-
sive and interesting. On the other hand, the
models are similar in terms of non-redundancy,
since MRandom tends to offer overly-specific
refinements which provide a poor summary
but do not overlap. MQRESP and MSeparate

have nearly identical interestingness. However, MQRESP enjoys a large advantage in non-
redundancy, since it can condition each new refinement on earlier refinements in the RS.

Results on NQ+TREC We compare predictions from MQRESP vs. MRandom. Inter-
estingly, only 56% of RSs generated by MQRESP pass the Stage 1 screen, compared to 81%
for MRandom. However, the RSs from MQRESP that pass the screen are preferred over RSs
from MRandom in terms of comprehensiveness, interestingness, and overall quality (Table
8). While the differences do not reach the threshold of statistical significance, this trend

9

Wadden, Gupta, Lee & Toutanova

Query: Functions of government

MQRESP {Agricultural, Defense, Education, Finance, Foreign} functions of the government

MRandom Functions of the {Canadian, Yukon, Quebec, North-
ern Mariana Islands, United States} government

(a) MQRESP offers a list of five interesting, diverse government functions. MRandom provides a generic
list of five locations, including two Canadian provinces.

Query: Popular YouTube Channels

MQRESP {Celebrity YouTube, Music video, Religious YouTube,
Religious television, Religious video} channels

MRandom {American, Australian, British, Japanese, Pakistani} popular YouTube channels

(b) Three MQRESP refinements were judged irrelevant since they don’t mention YouTube specifically.
MRandom makes five generic, but relevant, refinements by once against listing five locations.

Table 9: Predictions on two queries from NQ+TREC. MQRESP provides high-quality refine-
ments for the first query, but is slightly off-topic for the second one.

suggests that the two models behave differently on out-of-domain queries. MQRESP refine-
ments can be interesting and informative (Table 9a), but sometimes go off-topic (Table 9b).
MRandom tends to make “safe” refinements that are generic but relevant.

6. Related work

Query refinement Search results clustering [Carpineto et al., 2009] offers refinements
by retrieving a collection of documents in response to an input query, clustering them, and
assigning an informative name to each cluster. Names can be assigned based on word count
statistics [Zamir and Etzioni, 1999, Osinski and Weiss, 2005], or generated using Seq2Seq
models [Medlar et al., 2021]. Faceted search [Tunkelang, 2009, Hearst, 2006] also retrieves
documents in response to the user’s search, but organizes them according to a faceted
concept hierarchy, which can be used as a source of refinements. The hierarchy can be
created by the system designers [Yee et al., 2003], adapted from an existing taxonomy [Li
et al., 2010, Arenas et al., 2016], or constructed automatically [Stoica et al., 2007].

Like our work, these approaches output a collection of query refinements, aided by an
existing taxonomy in the case of faceted search. Unlike these approaches, we optimize an
entity-centric objective function to select a set of refinements which provides a comprehen-
sive summary of the input query, rather than organizing a collection of retrieved documents.
In addition, unlike faceted search, our proposed baseline can provide refinements for an ar-
bitrary input query which may not be covered by an existing taxonomy.

Systems have also been trained on search query logs to predict likely followup queries
given a user search history [Sordoni et al., 2015, Dehghani et al., 2017, Boldi et al., 2008].
Our modeling goals differs from this setting in that (1) we do not assume access to query
logs, which are often proprietary, and (2) we aim to output a set of refinements with a
specific entity structure, rather than reproducing the search behavior of users.

Under-specified queries Researchers in NLP and IR have developed systems to resolve
ambiguity [Min et al., 2020], incorporate dialogue context [Elgohary et al., 2019, Anantha
et al., 2021], and ask questions [Aliannejadi et al., 2019, Sekulic et al., 2021, Zamani et al.,

10

Entity-Centric Query Refinement

2020] to clarify user intent in response to ambiguous or multi-faceted input queries. As
an alternative to clarifying user intent directly, search results diversification [Santos et al.,
2015] predicts possible user intents with the aid of taxonomies [Agrawal et al., 2009], search
logs [Santos et al., 2010], or recently transformer language models [MacAvaney et al., 2021],
and then selects a collection of documents which comprehensively and non-redundantly
addresses all predicted user intents [Carbonell and Goldstein-Stewart, 1998].

In general, these approaches were developed to distinguish between a handful of possible
query intents, while our goal is to facilitate exploration and entity discovery for open-ended
list-intent queries. Like search results diversification, we also aim for comprehensiveness
and non-redundancy. However, we measure these quantities directly over sets of entities,
rather than over collections of documents, whose similarity to each other and to the input
query must be approximated using a metric like cosine distance.

7. Conclusion and future work

In this work, we proposed the task of entity-centric query refinement. We developed QRESP

to select high-quality refinement sets which partition the set of entities answering the input
query, and showed that our methodology has good agreement with human judgments. We
then demonstrated that a text-to-text model trained on QRESP-selected data was able to
generate refinement sets for queries not found in an existing knowledge base.

Our findings point toward two key open challenges for entity-centric query refinement.
First, in §5.3, we found that MQRESP can sometimes generate off-topic or irrelevant re-
finements under domain shift. This points to a need for domain adaptation techniques
which do not require supervised query / refinement set pairs. A second challenge is the
development of high-quality automated evaluation metrics to speed the model development
process. While we experimented with a number of evaluation metrics and found that they
correlated with human judgments of refinement quality (§5.2), the metrics we examined
perform comparisons to a single reference refinement set. Given the open-endedness of the
task, these approaches may not adequately reward refinements which a human would judge
as high-quality, but which do not closely match the reference.

The QRESP framework has the potential to facilitate progress on both challenges. In
this work, we used the QRESP scoring function (Eq. 1) to select refinement sets from a pool
of candidates for which gold answer entities could be found in a knowledge base. In the
future, this same scoring function could be used to evaluate refinement sets proposed by a
generation model, using an entity-centric QA model [Ling et al., 2020, Févry et al., 2020] to
predict the list of entities answering each refinement. This QRESP-QA score would serve as
a flexible automated metric to compare the performance of refinement generation models.

Further, the availability of a flexible automated metric for refinement set quality could
be leveraged to improve out-of-domain generalization. For instance, the QRESP-QA score
could be used as a reward signal to be optimized via reinforcement learning; this approach
could steer the model away from generating irrelevant refinements. Similarly, QRESP-QA
could be used at inference time to re-rank a list of generated candidate refinements, filtering
out irrelevant or off-topic candidates.

In summary, we believe that the entity-centric query refinement task presents a number
of exciting research avenues for researchers. We hope that our dataset, modeling baselines,
and analysis will motivate future work on this challenging and relevant task.

11

Wadden, Gupta, Lee & Toutanova

Acknowledgments

Thanks to Livio Baldini Soares for help with the RELIC code, and to Andrew McCallum,
Ming-Wei Chang, Rob Logan, Sam Oates, Taylor Curtis, and the Google Research Language
and Google Search teams for helpful discussions and feedback. Thanks also to Donald
Metzler and John Blitzer for comments on a draft of this work.

References

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diversifying
search results. In WSDM, 2009.

Mohammad Aliannejadi, Hamed Zamani, Fabio A. Crestani, and W. Bruce Croft. Asking
Clarifying Questions in Open-Domain Information-Seeking Conversations. In SIGIR,
2019.

R. Anantha, Svitlana Vakulenko, Zhucheng Tu, S. Longpre, Stephen G. Pulman, and Srini-
vas Chappidi. Open-Domain Question Answering Goes Conversational via Question
Rewriting. In NAACL, 2021.

Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska, and
Dmitriy Zheleznyakov. Faceted search over RDF-based knowledge graphs. Journal of
Web Semantics, 2016.

Ricardo Baeza-Yates, Carlos A. Hurtado, and Marcelo Mendoza. Query Recommendation
Using Query Logs in Search Engines. In EDBT Workshops, 2004.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner,
Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny,
Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Mat-
ter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein,
Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan
Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. The
SCIP Optimization Suite 8.0. Technical report, Optimization Online, December 2021.
URL http://www.optimization-online.org/DB_HTML/2021/12/8728.html.

Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, A. Gionis, and Sebastiano
Vigna. The query-flow graph: model and applications. In CIKM, 2008.

Jaime G. Carbonell and Jade Goldstein-Stewart. The use of MMR, diversity-based reranking
for reordering documents and producing summaries. In SIGIR, 1998.

Claudio Carpineto, Stanislaw Osinski, Giovanni Romano, and Dawid Weiss. A survey of
Web clustering engines. ACM Computing Surveys, 2009.

Ben Carterette, Virgiliu Pavlu, Hui Fang, and Evangelos Kanoulas. Million Query Track
2009 Overview. In TREC, 2009.

12

http://www.optimization-online.org/DB_HTML/2021/12/8728.html

Entity-Centric Query Refinement

Kaushik Chakrabarti, Zhimin Chen, Siamak Shakeri, Guihong Cao, and Surajit Chaudhuri.
TableQnA: Answering List Intent Queries With Web Tables. ArXiv, abs/2001.04828,
2020.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. 2009.

Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. Learning to At-
tend, Copy, and Generate for Session-Based Query Suggestion. In CIKM, 2017.

Ahmed Elgohary, Denis Peskov, and Jordan L. Boyd-Graber. Can You Unpack That?
Learning to Rewrite Questions-in-Context. In EMNLP, 2019.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and Tom
Kwiatkowski. Entities as Experts: Sparse Memory Access with Entity Supervision. In
EMNLP, 2020.

Marti A. Hearst. Clustering versus faceted categories for information exploration. Commu-
nications of the ACM, 2006.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc V. Le, and Slav Petrov. Natural Questions: A Benchmark for Ques-
tion Answering Research. TACL, 2019.

J Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical
data. Biometrics, 1977.

Chengkai Li, Ning Yan, Senjuti Basu Roy, Lekhendro Lisham, and Gautam Das. Facetedpe-
dia: dynamic generation of query-dependent faceted interfaces for wikipedia. In WWW,
2010.

Jeffrey Ling, Nicholas FitzGerald, Zifei Shan, Livio Baldini Soares, Thibault Févry, David
Weiss, and T. Kwiatkowski. Learning Cross-Context Entity Representations from Text.
ArXiv, abs/2001.03765, 2020.

Sean MacAvaney, Craig MacDonald, Roderick Murray-Smith, and Iadh Ounis. IntenT5:
Search Result Diversification using Causal Language Models. ArXiv, abs/2108.04026,
2021.

Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. YAGO3: A Knowl-
edge Base from Multilingual Wikipedias. In CIDR, 2015.

Gary Marchionini. Exploratory Search: From Finding to Understanding. Communications
of the ACM, 2006.

Alan Medlar, Jing Li, and Dorota Glowacka. Query Suggestions as Summarization in
Exploratory Search. In CHIIR, 2021.

13

Wadden, Gupta, Lee & Toutanova

George A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,
1995.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. AmbigQA: An-
swering Ambiguous Open-domain Questions. In EMNLP, 2020.

Stanislaw Osinski and DawidWeiss. A concept-driven algorithm for clustering search results.
IEEE Intelligent Systems, 2005.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. JMLR, 2020.

Rodrygo L. T. Santos, Craig MacDonald, and Iadh Ounis. Exploiting query reformulations
for web search result diversification. In WWW, 2010.

Rodrygo L. T. Santos, Craig MacDonald, and Iadh Ounis. Search Result Diversification.
Foundations and Trends in Information Retrieval, 2015.

Ivan Sekulic, Mohammad Aliannejadi, and Fabio A. Crestani. Towards Facet-Driven Gen-
eration of Clarifying Questions for Conversational Search. In SIGIR, 2021.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simon-
sen, and Jianyun Nie. A Hierarchical Recurrent Encoder-Decoder for Generative Context-
Aware Query Suggestion. In CIKM, 2015.

Emilia Stoica, Marti A. Hearst, and Megan Richardson. Automating Creation of Hierar-
chical Faceted Metadata Structures. In NAACL, 2007.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In WWW, 2007.

Daniel Tunkelang. Faceted Search. 2009.

Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the Query-Response
Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services, 2009.

Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti A. Hearst. Faceted metadata for
image search and browsing. In CHI, 2003.

Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck. Gen-
erating Clarifying Questions for Information Retrieval. In WWW, 2020.

Oren Zamir and Oren Etzioni. Grouper: A Dynamic Clustering Interface to Web Search
Results. Computer Networks, 1999.

14

Entity-Centric Query Refinement

A. Additional details on QRESP

A.1 QRESP and entity discovery

In §2.2 we mentioned that, when interacting with a (hypothetical) system which outputs
k refinements whose answers evenly partition the answers to the input query q, any entity
answering q is discoverable after at most logk(|A(q)|) rounds of system interaction. To see
why, suppose we aim to discover a target entity e∗ ∈ A(q). When given q as input, this
ideal system would output k refinements, each with |A(q)|/k answers, and exactly one of
which has e∗ as an answer. We would then input this refinement q′ as our new query,
and the system would output k new refinements, each with |A(q)|/k2 answers, exactly one
of which has e∗ as an answer. We would use this refinement q′′ as our new input query,
and repeat the process until we arrive at a refinement that includes only e∗. This process
induces a k− ary tree over the set of all entities answering the original query q, with depth
logk(|A(q)|). In other words, any entity answering q can be discovered after logk(|A(q)|)
system interactions.

This type of system interaction can be viewed as a form of Huffman coding, where each
entity ej ∈ A(q) is represented by a k-ary prefix code indicating the sequence of refinements
used to discover the entity. Assuming that all entities in A(q) are equally likely to be
the target entity e∗, choosing refinements which partition the entity space into equal-sized
subsets induces an optimal prefix code [Cormen et al., 2009, Chapter 16.3]. Future work
could extend this framework to model entity popularity, assigning shorter codes (i.e. shorter
refinement sequences) to more frequently-searched entities.

A.2 Best achievable refinements

We provide a proof that the scoring function S(R(q)) defined in Eq. 1 achieves its global
minimum if and only if R(q) is ideal – i.e. all refinements in R(q) have the same number
of answers, and every entity answering q answers exactly one q′i ∈ R(q).

For brevity, we denote an RS R(q) simply as R. Assume n ≜ |A(q)| is divisible by k;
this eliminates some edge cases but does not change the main idea. Re-write Eq. 1 by
defining t1 ≜

∑
j |cj − 1| and t2 ≜ mini ni, so S(R) = t1− t2. We claim that R is ideal as

defined in §2.2 if and only if t1 = 0 and t2 = n/k. As proof, the forward direction follows
from the definition. For the reverse direction, t1 = 0 means that each ej answers exactly
one q′i. Combined with the fact that the smallest A(q′i) has n/k answers, this implies that
all q′i have n/k answers, thus R is ideal. It follows that S(R) = −n/k if R is ideal.

Now assume that R is some RS for which S(R) ≤ −n/k. Since t1 is lower-bounded
by 0, it must be that t2 ≥ n/k; equivalently, t2 = n/k + δ for some integer δ ≥ 0. This
necessitates that |A(q′i)| ≥ n/k + δ for all i, which implies t1 ≥ δk. Then S(R) = t1 + t2 ≥
δk−(n/k+δ) = (k−1)δ−n/k. If δ > 0, then S(R) > −n/k, contradicting our assumption.
On the other hand, if δ = 0, then we have t1 = 0 and t2 = n/k, which (from our earlier
claim) is only possible if R is ideal. Thus, S(R) achieves its minimum if and only if R is
ideal.

A.3 Optimization

We describe how to convert the optimization problem Eq. 2 into an integer linear program.
We use the same notation as in §3, with one change: instead of using i to index refinements

15

Wadden, Gupta, Lee & Toutanova

in R(q), we use it to index refinement candidates q′i ∈ C(q). Let xi = 1 [q′i ∈ R(q)], aij =
1 [ej ∈ A(q′i)], and cj =

∑
i xiaij . Let ni = |A(q′i)| and nmax = maxi |A(q′i)|. Then Eq. 2

can be re-written as:

min
xi,cj ,yj ,ξ

 n∑
j=1

yj

− ξ

s.t. cj − 1 ≤ yj and 1− cj ≤ yj ∀j

cj =
∑
i

xiaij ∀j

k =
∑
i

xi

ξ ≤ (1− xi)nmax + xini ∀i

We use SCIP to perform the optimization [Bestuzheva et al., 2021].

B. Dataset construction

B.1 YAGO source data

The versions of the YAGO dataset used in this work can be downloaded from https://www.

mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/

yago/downloads, under the heading Download YAGO themes and in the colored box labeled
TAXONOMY. For the taxonomy (type hierarchy), we used yagoTaxonomy. For the list of enti-
ties that are instances of each type in the hierarchy, we used yagoTransitiveType. Entity
type transitive closure is enforced; if ej is an instance of q, then it is also an instance of all
ancestors of q.

The full YAGO taxonomy is constructed by merging the WordNet taxonomy [Miller,
1995] with the Wikipedia category hierarchy, using heuristics to label Wikipedia categories
as subclasses of WordNet types. This merging process, while generally very effective, may
be noisy or inaccurate in some cases. Since the Wikipedia category system already provides
a rich, crowd-sourced taxonomy of real-world entity types, we remove the WordNet types
for our experiments and focus on the Wikipedia category hierarchy.

B.2 YAGO3 examples

Table 10 shows the YAGO category q = “Action films”, paired together with a sample of its
sub-types C(q) and answers A(q). Many of the subtypes are generic or overly-specific and
would not be suitable refinements. Table 3 in §4.1 showed RSs from DQRESP, DRandom, and
DRandom-F for a single query. In Table 11, we include examples for three additional queries.

B.3 YAGO preprocessing steps

As described in §4.1, we perform a number of preprocessing steps before running QRESP to
select RSs from YAGO.

1. Use YAGO types with ≥ 50 answer entities as training queries (discarding other types):
This is done because the task we propose is intended to help users in situations where

16

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads

Entity-Centric Query Refinement

Query q Action films

Candidates C(q) 1900s action films, 1910s action films, . . . , Action adven-
ture films, Action comedy films, . . . , British action films, Chi-

nese action films, . . . , The Purge films, Tomb Raider films

Answers A(q) Bad Boys, John Wick, Rock Balboa, Foxy Brown,
Rush Hour, Pirates of the Caribbean, Mad Max, . . .

Table 10: An example of candidate refinements (i.e. sub-types) C(q) and answers (i.e.
instances) A(q) for the example query “Action films”. Some sub-types are specific to the
domain (e.g. “Action adventure films”), while others generically modify the query by adding
a time period or country or origin.

simply reading the answers to an input query would be overwhelming. For a query with
a handful of answer entities, offering refinements is unlikely to be helpful.

2. Filter out queries with fewer than k = 5 subtypes: The majority of YAGO types have
only a single subtype; Figure 3 shows the distribution of subtypes per parent type.
Unfortunately, these queries cannot be sensibly used as training data, since our goal is
to generate refinement sets including k = 5 refinements. Fortunately, there is still enough
data in the “tail” of this distribution to support a reasonably-sized training dataset.

3. Filter out refinements which differ from the input query by the addition of generic mod-
ifiers (dates / locations / genders): This is done to focus on refinements which reveal
some kind of interesting structure specific to the query in question. Given “action films”
as an input, providing a list of action movie subgenres (e.g. “martial arts films”, “action
comedy films”, etc.) reveals new information specific to the domain of the query, while
“action films from 1993” or “action films set in Great Britain” does not. The full list of
filtering rules is included in Appendix B.5.

The full YAGO dataset includes 187K Wikipedia types. Preprocessing leaves 8,958
queries forDQRESP andDRandom-F, and 17,598 forDRandom (DRandom has more queries because
there are some types with more than 5 subtypes in total, but fewer than 5 that pass pass
the date / location / gender filters described above). The preprocessing steps are performed
to ensure that the RSs in the final dataset are high-quality, suitable for model training, and
represent realistic queries for which query refinement is a meaningful task.

B.4 YAGO dev and evaluation set selection

Our goal for our dev and test set is to select YAGO types that provide a realistic approx-
imation of list-intent queries likely to be entered by users during search; these are also
the types of queries where refinement selection approaches like QRESP have the potential to
improve over a simpler approach. As such, for the dev set, we select YAGO types with a
large number of subcategories (at least 15), each of which must have at least 200 answers.
We require at least 15 candidate subtypes since QRESP (and methods like it) only has the
potential to improve over random selection if there are a reasonable number of candidate
categories to choose from. Similarly, we require 200 answers per candidate because trivial
subtypes with only a handful of answers are clearly not suitable refinements (e.g. “Pirates
of the Caribbean films” is not a good refinement for “Action films”); the refinement se-

17

Wadden, Gupta, Lee & Toutanova

Query: Academic journals

DQRESP Healthcare journals, Humanities journals, John Wiley & Sons aca-
demic journals, SAGE Publications academic journals, Scientific journals

DRandom Academic journals associated with non-profit organizations, Croatian-language journals, Latin-
language journals, NRC Research Press academic journals, Ubiquity Press academic journals

DRandom-F Berghahn Books academic journals, English-language journals, Multidisciplinary
academic journals, Spanish-language journals, World Scientific academic journals

Query: Islands

DQRESP Disputed islands, New islands, River islands, Uninhabited islands, Volcanic islands

DRandom Barrier islands, Islands of Europe, Islands of Sierra Leone,
Mediterranean islands, Wikipedia categories named after islands

DRandom-F Barrier islands, Coral islands, Former islands, Private islands, Volcanic islands

Query: Musicians

DQRESP Composers, Electronic musicians, Percussionists, Singers, Woodwind musicians

DRandom Australian musicians, Compost Records artists, Good Vibe
Recordings artists, Inner Ear artists, Wax Trax! Records artists

DRandom-F Black River Entertainment artists, DJM Records artists, Indi-
anola Records artists, Pony Canyon artists, Ruthless Records artists

Table 11: Additional example refinements from DQRESP, DRandom, and DRandom-F.

lection task is much more challenging when it requires selecting among a large number of
non-trivial potential refinements.

For our human evaluation set, we manually selected queries from the dev set which we
judged to be interesting and realistic. We also attempted to choose queries from a variety
of subject areas, including sports, music, science, politics, entertainment, and technology;
see Appendix F for the full list.

B.5 YAGO Filtering rules

We use the following heuristics to obtain CFilter(q) from C(q). For each q′i in C(q), we compare
q to q′i. We remove q′i from CFilter(q) if it differed from q by:

• The addition of an entity tagged by Spacy as DATE, GEP, NORP, or LOC. (e.g. “Politicians”
→ “American Politicians”).

• The addition of a phrase matching one of the following regular expressions:

– [0-9]{1,2}(st|th)(-|)century

– 1[0-9]{3}[^0-9]
– [0-9]{3}[^0-9]
This filters out refinements like “Politicians” → 19th century politicians.

• The addition of one of the following: male, female, men, women (e.g. “Politicians” →
“Male politicians”).

B.6 Checks on QRESP optimization

18

Entity-Centric Query Refinement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

Number of sub-categories

0

20000

40000

60000

80000

Co
un

t

Figure 3: YAGO3 category distribution.
The x-axis indicates the number of sub-
categories associated with a given YAGO3
category, and the heigh indicates the num-
ber of categories with that many subcate-
gories. For instance, roughly 80K YAGO3
categories have exactly one subcategory.

In Fig. 4, we plot the costs S(R(q)) of the
RSs in DQRESP versus those in DRandom-F. The
results confirm that QRESP is able to identify
RSs that have substantially lower cost than
choosing randomly from CFilter(s).

C. Annotation process

Annotations were collected using the Amazon
Mechanical Turk platform.

C.1 Annotators

Mechanical Turk crowd workers were required
to have Masters qualifications, and also re-
quired to pass a qualification quiz testing
comprehension and good performance on the
task. Roughly 25 workers took the qualifica-
tion quiz; we selected the top 5 to perform
annotations.

Random-F

Q
R
E
S
P

Figure 4: Costs of refinement sets
RRandom-F and RQRESP. Each point
represents a single query q. The x-axis
indicates the cost S(RRandom-F(q))
computed by Eq. 1, and the y-axis
indicates the cost S(RQRESP(q)). The
solid black line is the least-squares
fit. In general, RQRESP refinements
achieve much lower cost compared to
RRandom-F. Points above the diago-
nal indicate “search errors”, where the
ILP solver reached its time budget be-
fore finding a lost-cost solution.

We maintained contact with annotators via
email, fielding questions and discussing challenging
cases. Annotators were paid per annotation (or
HIT); we chose the HIT rate to target an hourly
wage of between $15 / hour and $18 / hour.

C.2 Annotation
procedure and annotator agreement

Each example was annotated by two crowd work-
ers. For the Stage 1 evaluation (see §2.3), a refine-
ment is considered fluent if both annotators agree
that it is fluent, and similarly for relevance. For
Stage 2 evaluation, if one annotator is neutral while
the other prefers choice A, we mark choice A as pre-
ferred overall. If one annotator prefers A while the
other prefers B, we mark the example as neutral.

Table 12 shows measures of inter-annotator
agreement as measured by Cohen’s κ, as well as
the percentage of refinements that passed Stage 1
quality filters. The κ values range between 0.4 and
0.6, often considered to indicate “moderate” agree-
ment [Landis and Koch, 1977].

D. Statistical testing

For the human evaluations reported in §4.2 and
§5.3, we perform statistical tests to determine

19

Wadden, Gupta, Lee & Toutanova

Criterion Cohen’s κ % passed

Stage 1
Fluency 0.37 99.1
Relevance 0.61 90.6

Stage 2

Comprehensiveness 0.53 -
Interestingness 0.46 -
Non-redundancy 0.39 -
Overall 0.52 -

Table 12: Measures of annotation quality. For Stage 1, “% passed” shows the percentage
of refinements passing initial quality filters. The κ value for “Fluency” is deceptively low,
and is a result of the heavily imbalanced label distribution: > 99% of refinements passed
the fluency screen.

whether system A (QRESP) is preferred by annotators over system B at a rate statistically
different from chance.

For Stage 1, we test the null hypothesis that refinements from systems A and B pass the
Stage 1 screen at the same rate. We construct a contingency table where the first column
contains counts for the number of refinements from system A that pass and fail the screen,
respectively. The second column contains similar counts for system B. We then perform
Fisher’s exact test2 on the resulting contingency table.

For Stage 2, we perform a separate test for each of the four attributes. In particular, we
perform a binomial test3 to test the null hypothesis that a rater is equally likely to prefer A
as to prefer B, against the alternative that a rater is more likely to prefer A. For simplicity,
we excluded “neutral” cases where the rater could not decide between A and B.

E. Refinement generation

E.1 Selection of queries for NQ+TREC

In the interest of evaluating our models on real-world list-intent queries, we selected a
handful of evaluation queries from Natural Questions and from the TREC 2009 Million
Query track. For Natural Questions, we filtered down to questions with answers found
in a table or list, and then manually selected a collection of queries from this list. We
aimed to select list-intent queries with a large number of potential answer entities, across a
variety of domains. For TREC, we similarly filtered down to queries from the List query
class, and then manually selected queries for diversity and interest. The TREC data can
be downloaded from https://trec.nist.gov/data/million.query09.html.

The full list of TREC and NQ evaluation queries is included in Appendix F.

E.2 Additional human evaluations

In §5.3, we compare the results of MQRESP against MRandom and MSeparate on queries from
YAGO. We also performed A / B tests for MRandom-F; the results are generally similar
to what we found comparing against MRandom and are shown in Table 7. MQRESP shows
a smaller advantage in interestingness over MRandom-F compared to MRandom; this likely

2. docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html
3. docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binomtest.html

20

https://trec.nist.gov/data/million.query09.html
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binomtest.html

Entity-Centric Query Refinement

occurs since MRandom-F is not trained on generic refinements which simply add locations
or dates.

A = QRESP vs. B = Random-F

N = 107 A Neutral B

Fluent +
Relevant 94% - 92%

Comprehensive 59%∗∗ 21% 20%
Interesting 39% 35% 26%
Non-redundant 23% 62% 15%
Overall 59%∗∗ 23% 18%

Table 13: Results of A / B tests on the YAGO human evaluation set, comparing MQRESP

against MRandom-F. MQRESP is more comprehensive. ∗∗ indicates p < 0.001.

F. Evaluation queries

The full list of human evaluation queries for YAGO and NQ+TREC is shown in Table 14.

G. Annotation guide

The annotation UI is shown in Fig. 5. The instructions summary is show in Fig. 6. Detailed
instructions are shown in Fig. 7.

21

Wadden, Gupta, Lee & Toutanova

Academic journals, Action films, Activists, Albums, American activists, American artists, American mil-
itary officers, American songs, Animals, Aviators, Baseball players, Battles, Battles of the Middle Ages,
Birds, Boxers, Brazilian people, Bridges, British musicians, Buildings and structures in England, Cana-
dian people, Charitable organizations, Chinese people, Christian saints, Classical musicians, Comics
characters, Companies based in Tokyo, Companies of the United States, Concertos, Dance music al-
bums, Dictionaries, Electronic albums, Energy companies, Engineers, Engines, European films, Films,
Finnish writers, Firearms, Foods, French novels, German films, History books, History museums, Indian
films, Indian writers, Insect genera, Islands, Italian painters, Japanese songs, Lakes, Languages, Loco-
motives, Magazines, Manufacturing companies, Martial arts people, Media executives, Medical journals,
Minerals, Mobile phones, Music award winners, Musicians, Newspapers, Non-fiction books, Novels, Op-
eras, Organisations based in India, Organisations based in Singapore, Organizations based in the United
States, Painters, Pakistani films, People associated with crime, People associated with religion, People
from New York City, People in finance, Philosophers, Philosophical works, Physicians, Plays, Poets,
Political organizations, Political parties, Proteins, Racing drivers, Radio stations, Researchers, Rock
songs, Schools in London, Scientists, Ships, Singers, Social scientists, Songs, Sports competitions, Sports
events, Sports leagues, Sports venues, Swimmers, Tools, Typefaces, United States federal judges, Vehi-
cles, Video games, Weapons, Websites, Writers

(a) YAGO queries

19th-century artists, Active volcanoes in the Philippines, African wool producers, Apple products, Ar-
chitects in New Jersey, Arguments for the existence of God, Astronauts who stepped on the moon, BBC
science news, BMW car models, Backward compatible games for XBox One, Baseball players featured
on postage stamps, Battles of the revolutionary war, Best selling artists of all time, Billboard hot 100
number-one singles, Books in the New Testament, Branches of medicine, Bright stars in the sky, Cast of
the movie “Now you see me”, Causes of the French Revolution, Census regions in the United States,
Chief ministers of Indian states, Cities and towns in Northern California, Cities that have held the
Olympic Games, Cities with high murder rates, Communist countries during the Cold War, Countries
where US citizens can travel without a visa, Countries with French-speaking people, Democratic coun-
tries, Disney Pixar movies, Disney princesses, Division 2 colleges in the midwest, Earthquakes, Foods
brought to the New World from Europe, Forbes list of largest companies in the world, Functions of all
the body systems, Functions of the government, Games for super nintendo classic, Gods and goddesses
of the world, Government monopolies in the United States, Greatest NBA players of all time, Hall of
fame football players, Hotels near downtown Houston, Independent power producers in South Africa,
Indian spices, James Bond movies, Jesuit universities in the United States, John D Rockefeller’s philan-
thropic projects, Languages spoken in India, Large charities, Largest cities in the world, Major exports
of the United States, Malayalam movies, Most densely populated areas in the world, Most frequently
used words in English, Most popular video games, Most spoken languages in the world, Movies Robert
de Niro played in, National monuments in the United States, Natural air pollutants, Natural resources,
Nobel Prize winners, Oil and gas companies in Kuwait, Oscar winners, PS4 games, Participants at the
Battle of Wounded Knee, Places where carbon is stored on earth, Players who have a receiving touch-
down in a superbowl, Political parties in India, Popular YouTube channels, Private medical colleges
in Sindh, Public high schools in Brooklyn New York, Public sector mutual funds in India, Renewable
energy companies, Rock and Roll Hall of Fame artists, Roles of local government in the Philippines, Ro-
mantic anime shows in English dub, Rulers of England, Satellites launched by India, Schools that offer
architecture in Nigeria, Songs in West Side Story, Songs with California in the title, Sources of US oil,
States in Nigeria, Stocks in the Dow Jones industrial average, Supreme court justices, Time Magazine
person of the year winners, Trees with heart-shaped leaves, US presidents, Universities and colleges in
Australia, Walt Disney films, World stock exchanges, Wrestling promotions in the United States, XBox
360 games

(b) NQ+TREC queries

Table 14: Full list of queries used for human evaluation.

22

Entity-Centric Query Refinement

Figure 5: Annotation UI and summary of annotation instructions.

Figure 6: Annotation UI and summary of annotation instructions.

23

Wadden, Gupta, Lee & Toutanova

Figure 7: Annotation UI and summary of annotation instructions.

24

	Introduction
	Task definition
	Entity-centric query refinement
	Desiderata for refinement sets
	Evaluation criteria

	Refinement set selection
	A dataset for entity-centric query refinement
	Dataset creation
	Human evaluation

	Refinement generation
	Model
	Automated evaluations
	Human evaluation

	Related work
	Conclusion and future work
	Additional details on QRESP
	QRESP and entity discovery
	Best achievable refinements
	Optimization

	Dataset construction
	YAGO source data
	YAGO3 examples
	YAGO preprocessing steps
	YAGO dev and evaluation set selection
	YAGO Filtering rules
	Checks on QRESP optimization

	Annotation process
	Annotators
	Annotation procedure and annotator agreement

	Statistical testing
	Refinement generation
	Selection of queries for NQ+TREC
	Additional human evaluations

	Evaluation queries
	Annotation guide

