
Automated Knowledge Base Construction (2021) Conference paper

Neural Concept Formation in Knowledge Graphs

Agnieszka Dobrowolska aga.dobrowolska.16@ucl.ac.uk
University College London, London, United Kingdom

Antonio Vergari aver@cs.ucla.edu
University of California Los Angeles, Los Angeles, United States

Pasquale Minervini p.minervini@ucl.ac.uk
University College London, London, United Kingdom

Abstract
In this work, we investigate how to learn novel concepts in Knowledge Graphs (KGs) in

a principled way, and how to effectively exploit them to produce more accurate neural link
prediction models. Specifically, we show how concept membership relationships learned via
unsupervised clustering of entities can be reified and used to augment a KG. In a thorough
set of experiments we confirm that neural link predictors trained on these augmented KGs,
or in a joint Expectation-Maximization iterative scheme, can generalize better and produce
more accurate predictions for infrequent relationships. For instance, our method yields
relative improvements of up to 8.6% MRR on WN18RR for rare predicates, and up to 82%
in small-data regimes, where the model has access to just a small subset of the training
triples. Furthermore, our proposed models are able to learn meaningful concepts.

1. Introduction

One of the most remarkable aspects of human intelligence is arguably the capacity to abstract
and summarize knowledge into concepts. It is believed to play a central role in allowing
humans to learn quickly from few examples [Lake et al., 2015] and to robustly generalize
to unseen data [Pothos and Chater, 2002, Lakoff and Johnson, 1980, Rosch et al., 1976].
It is no wonder that many machine learning and knowledge representation methods have
tried to “reverse-engineer” how humans learn concepts [Tenenbaum, 2018, Hassabis et al.,
2017] in order to automate reasoning as well as knowledge base construction [Kok and
Domingos, 2007, Kemp et al., 2006, Xu et al., 2006]. Among the most prominent knowledge
representation formalisms, there are Knowledge Graphs (KGs) – graph-structured knowledge
bases where knowledge about the world is encoded in the form of relationships between
entities. KGs encode facts about entities and the relationships between them (edges) as
subject-predicate-object triples, each denoting a relationship of type predicate between the
subject and object of the triple. A fundamental task in the construction of KGs is link
prediction, which consists of identifying missing edges between entities in the KG.

Neural link predictors are a class of link prediction models achieving state-of-the-art
results on several link prediction benchmarks while being able to scale to very large KGs.
Neural link predictors learn embedding representations for each entity and relation in the
KG via back-propagation [Nickel et al., 2016]. However, neural link predictors are known
not to be accurate in the presence of sparse KGs, i.e., when entities appear only in few
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Figure 1: High-level visualization of ConFormA and ConFormAE: entities are proposi-
tionalized and clustered in concepts, and concept memberships are added to the
KG as triples. In ConFormAE, concept memberships are iteratively revised to
maximize the likelihood of the data.

triples [Pujara et al., 2017], also referred to as the cold-start problem, and may not be able to
learn patterns involving groups of entities [Evans and Grefenstette, 2018].

In this work, we propose to learn concepts in neural link predictors as a principled way to
elicit discrete latent information that can alleviate the generalization issues of existing models.
Moreover, learning new concepts and turning them into entities can help to automate the
construction of KGs. Specifically, we make the following contributions. First, we formalize
concept learning as an unsupervised clustering step over entities in a KG. We do this first
by reifying concept membership relationships into KG facts and by incorporating them in
the KG, in a process called KG augmentation, akin to Gad-Elrab et al. [2020]. Then, we
demonstrate that training out-of-the-box neural link predictors on these augmented KGs
improves their accuracy. Secondly, we introduce a single, principled probabilistic framework
for jointly learning concept memberships and neural link prediction models at once, by
maximizing the likelihood of the KG triples via an Expectation-Maximization scheme. Lastly,
we execute a rigorous empirical evaluation on several real-world KG benchmarks, showing
that both of our approaches, named ConFormA and ConFormAE, are capable of learning
semantically meaningful concepts. We observe that explicitly augmenting the KG with the
newly-learned concepts can improve generalization over rare predicates by up to 8.6% in
terms of Mean Reciprocal Rank (MRR) on WN18RR and 2.1% on FB15k-237. Furthermore,
we perform a sparsification analysis where neural link predictors are trained on only a small
subset of the training set, showing that ConFormA and ConFormAE can achieve up to
82% relative improvement on WN18RR and 21% on FB15k-237 when trained on only 5% of
the data. This highlights the potential of our approach for addressing the cold-start problem
in sparse KGs.

2. Background

Let a KG G be represented as a set of N triples, i.e., G = {〈s, r, o〉i}Ni=1 ⊆ E × R × E
where E = {ei}Ne

i=1 is the set of subject (s) and object (o) entities, and R = {ri}Nr
i=1 the

set of relation types (r). Neural link predictors can be framed as learning a k-dimensional
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Algorithm 1 ConFormA(G, Nc, n)
1: Input: KG G, no. of clusters Nc, no. of epochs n
2: Output: Parameters Θ, cluster memberships S = {Sc | c ∈ C}
3: P← propositionalization(G) . E.g., random paths
4: S ← Clustering(P, Nc) . E.g., spectral clustering
5: G′ ← G ∪ {〈ei, ISA, cj〉 | ei ∈ Sc, c ∈ C} . Create an augmented KG
6: Θ← init()
7: for n epochs do . Train the parameters Θ of a neural link predictor on G′
8: Θ← train(G′,Θ)

return Θ,S

representation, i.e., an embedding vector e ∈ Ck, for all entities in E appearing in G. Given a
triple 〈s, r, o〉 ∈ E ×R×E , a neural link predictor defines a scoring function φr : Ck×Ck 7→ R
that, given the embedding representations es ∈ Ck and eo ∈ Ck of the subject s and
the object o of the triple, returns the score φr(es, eo) ∈ R that s and o are related by
the relation type r. The scoring function φr implicitly defines a probability distribution
p over triples. Let xsro be a binary random variable denoting the existence of the triple
〈s, r, o〉, then we have that the probability of observing the triple is proportional to its
score, i.e., p(xsro) ∝ φr(es, eo) [Nickel et al., 2016]. Examples of neural link predictors are
TransE [Bordes et al., 2013], DistMult [Yang et al., 2015b], and ComplEx [Trouillon et al.,
2016]. In this work, we adopt the latter two as baselines, as they achieve state-of-the-art
performance on a number of benchmarks when trained with care [Ruffinelli et al., 2020].

Let E ∈ CNe×k and W ∈ CNr×k be the relation and entity embeddings. Then, learning a
neural link predictor from data consists of finding the best set of parameters Θ = {E,W} that
solve the optimization problem arg minΘ L(G; Θ) + λΩ(Θ), where L(G; Θ) denotes a model-
specific loss, typically proportional to the negative log-likelihood of the triples [Trouillon
et al., 2016], and Ω( · ) is a regularization term, such as the L2 or the nuclear weighted 3-norm
[N3, Lacroix et al., 2018], whose weight is determined by a coefficient λ ≥ 0. In the following
section, we discuss how this learning loop for neural link predictors can be extended to learn
concepts in a KG, while treating the link predictor model as a black-box.

3. ConFormA: Learning Concepts by Augmenting Knowledge Graphs

Given a KG G, we define concept learning as identifying sets of entities S1, . . . , SNc ⊆ E that
are semantically related and can be abstracted into concepts c1, . . . , cNc ∈ C. We aim at
finding a partitioning of entities S = {Si}Nc

i=1, such that each entity is assigned to a single
concept at a time, i.e., ∀Si, Sj ∈ S → Si ∩ Sj = ∅, and

⋃
S∈S S = E . To this end, a natural

solution is to perform a hard clustering of the entities in the KG G. Then, we can reify the
cluster membership relations, i.e., introducing the concepts c1, . . . , cNc as new entities, and
materializing the concept membership relations as new triples. We refer to this process as
KG augmentation. Algorithm 1 summarizes our framework, which can be instantiated for
different clustering and neural link prediction models. We name it Concept Formation via
Augmentation (ConFormA). Next, we discuss how to perform these two steps, and the
reasons why neural link predictors can benefit from being trained on augmented KGs.
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Clustering entities. Ideally, the clustering step in ConFormA could be performed
by any relational clustering algorithm. However, classical probabilistic approaches such as
statistical predicate invention [Kok and Domingos, 2007] and stochastic block models [Kemp
et al., 2006, Xu et al., 2006] would hardly scale to modern KGs with hundreds of thousands of
entities. This poses a challenge also to kernel-based approaches [Blondel et al., 2008, de Vries,
2013, Morris et al., 2017]. To overcome this issue, we opt for a more computationally efficient
alternative: we first propositionalize entities into d-dimensional embedding vectors [Kramer
et al., 2001] and then employ a propositional clustering algorithm – e.g., spectral clustering [Ng
et al., 2001] or K-means – over this now tabular representation P ∈ RNe×d.

We find that executing multi-hop random paths in G, as proposed by Das et al. [2020],
provides scalable and accurate entity representations. We also explored clustering directly
over the embeddings learned by a neural link prediction model but with scarce or no link
prediction improvements (see Appendix E, Table 15). This could be due to the latent
concept information which we explicitly introduce via augmentation being already captured
by the neural link predictor embeddings, while graph-based features add complementary
information, as observed in Nickel et al. [2016].

Knowledge Graph Augmentation. Given the set S, we reify the cluster membership
relations by materializing new triples to augment G. Specifically, for each entity e participating
in a cluster c ∈ C we create a new triple of the form 〈e, ISA, c〉, where c is a new entity denoting
the j-th concept, and ISA is a freshly introduced relation denoting concept memberships.1

Let G′ denote the augmented KG, i.e., G′ ← G ∪ {〈e, ISA, c〉 | e ∈ Sc, c ∈ C}, where
Sc is the set of entities assigned to concept c. Learning a neural link predictor simply
requires calling its usual training routine (lines 6-8 of Algorithm 1) over the augmented
KG G′. Specifically, its set of parameters Θ′ = {E,W,C}, which now includes the concept
embeddings C ∈ CNc×k for the newly introduced concept entities C = {c1, . . . , cNc}, can be
updated by minimizing the neural link predictor’s loss function, along its other parameters.

ConFormA is likely to improve the generalization of a neural link predictor for the
following reasons. Firstly, this kind of augmentation acts as injecting background knowledge
that does not need to be learned from scratch, akin to when inverse relation triples [Lacroix
et al., 2018, Kazemi and Poole, 2018] or hierarchical relation information [Zhang et al., 2018]
are explicitly added to KGs. Secondly, they help to make very sparse KGs more dense,
tackling the sparsity issues in neural link predictors [Pujara et al., 2017].

4. ConFormAE: Jointly learning Concepts and Embeddings

ConFormA is a flexible framework: it can be customized with any propositionalization
and clustering routines, and wrapped around any neural link prediction model. A natural
question then arises: is it possible to automatically devise a propositionalization scheme that
enhances clustering and embedding quality, that is, to jointly learn both the concepts and the
embeddings? Ideally, we could cast this as a joint optimization problem to maximize the
marginal log-likelihood of the triples in G, where marginalization is performed over some latent
variable Z denoting the cluster assignments, i.e., having values c ∈ C. As directly maximizing
this marginal likelihood is intractable, we adopt an iterative Expectation-Maximization

1. A similar augmentation strategy has been independently proposed in Gad-Elrab et al. [2020] to learn
rule-based explanations for a subset of the KG entities. See Section 5 for a discussion.
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Algorithm 2 ConFormAE(Θ,S, Nc, n, t)
1: Input: no. of clusters Nc, initial parameters Θ, no. of epochs n, and no. of iterations t.
2: Output: Updated parameters Θ, cluster memberships S = {Sc | c ∈ C}
3: for t iterations do
4: for c ∈ C do . Initialise the cluster memberships
5: Sc ← ∅
6: for e ∈ E do
7: ĉ← arg maxc∈C φISA(ee, ec)
8: Sĉ ← Sĉ ∪ {e}
9: G′ ← G ∪ {〈e, ISA, c〉 | e ∈ Sc, c ∈ C} . E-step: Make hard assignments

10: for n epochs do . M-step: Refine the neural link prediction model
11: Θ← train(G′,Θ)

return Θ,S

(EM)-like scheme [Dempster et al., 1977]. Algorithm 2 summarizes the whole process, which
we name ConFormAE – Concept Formation with Augmentation via EM. We next discuss
in detail how to design the expectation (E) and maximization (M) steps efficiently.

E-step. Let p(Z | e) denote the distribution over concept-memberships induced by
the neural link predictor for the entity e. Recall from Section 2 that the probability of
assigning entity e to concept c is proportional to the score assigned to the reified triple
(Section 3) encoding its concept membership, i.e., p(Z = c | e) ∝ φISA(ee, ec), where
ee, ec denote the embeddings of e and c, respectively. Exactly computing all the cluster
memberships p(Z = c | e) for each entity e and concept c ∈ C is a hard problem, since we
would need to compute an intractable partition function. We therefore resort to compute
hard cluster assignments, a practical approximation commonly adopted in many hard-EM
variants [Samdani et al., 2012, Kok and Domingos, 2007]. That is, we are interested in
solving ĉ = arg maxc∈C p(Z = c | ei) for each entity ei. Note that this can be done exactly
and efficiently as ĉ = arg maxc∈C φISA(ee, ec) and therefore it reduces to predicting the most
probable link between the entity e and a concept in C.

M-step. The aim of this step is to find the best set of parameters Θ′ for a neural link
predictor by maximizing its log-likelihood, i.e., Ece∼p(·|e)

[
log p(X) +

∑
e∈E log p(Z = ce | e)

]
where log p(X) here compactly denotes the likelihood of the data in G, and ce ∈ C denotes
the concept associated with the entity e ∈ E . This quantity can be efficiently approximated
via our reification and augmentation scheme. In fact, at the end of the E-step, we had
retrieved the clustering S (as in ConFormA, cf. Section 3). Therefore, to find Θ′ we can
simply train the neural link prediction model for a certain number of epochs n over the
augmented KG G′.

We refer to Appendix A for an in-depth analysis of the time and space complexity of
ConFormA and ConFormAE.

5. Related Work

Concepts are a fundamental building block of modern Knowledge Graphs. For example, the
Resource Description Framework [RDF, Klyne and Carroll, 2004] data model allows to state
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that a resource is an instance of a concept (or class) via the rdf:type predicate, while its
extension RDF Schema [Brickley and Guha, 2014] allows for specifying subclasses between
concepts, and using concepts for specifying domain and range of predicates.

Concept Learning for Relational Data. Relational clustering, sometimes known as
statistical predicate invention [Kok and Domingos, 2007], has been addressed in different
communities and under different relational formalisms. For instance, the Infinite Relational
Model [IRM, Kemp et al., 2006], is a Bayesian non-parametric interaction method for
detecting community of users in networks, later extended to multiple relation types [Xu et al.,
2006]. The Multiple Relational Clusterings [MRC, Richardson and Domingos, 2006] model
extends the IRM to learning multiple cross-cutting clusterings, i.e. allowing each object to
belong to more than one cluster, under the general framework of Markov logic networks
(MLNs). The above approaches (and their variants) would hardly scale to the KGs we employ
in our experiments. To see why, consider that to train either the IRM or the MRC on a
small knowledge graph such as UMLS [McCray, 2003] (135 entities, see Section 6) took 10
hours, while both our algorithms require less than 3 minutes.

Concept learning for KGE models. In a preliminary study, Nickel and Tresp [2011]
explore how to reconstruct a taxonomy over entities by performing hierarchical clustering of
entity embeddings. Differently from our work, they do not learn embedding representations
for the learned concepts nor use concept learning to improve link prediction on the original
KG. Zhang et al. [2018], on the other hand, proposed learning and explicitly modeling
taxonomies over relations. To do so, they cluster relation embeddings in a three-layer
hierarchy. Our augmentation approach, while focusing on entity concepts, can be generalized
to relations as well, after reifying them. Closer to our work, Gad-Elrab et al. [2020] propose an
iterative clustering scheme which involves i) clustering latent embeddings, ii) reifying learned
cluster memberships and then, iii) updating latent embeddings. Differently from our work,
however, they do not aim at improving neural link prediction accuracy, but eliciting rules to
explain subsets of entities. Without this difference in mind, their scheme can be thought of
as a particular instance of ConFormA where K-Means is used for directly clustering the
latent embeddings. We confirmed empirically that this instance of ConFormA does not
yield statistically significant improvements over baselines (see Appendix E, Table 15). More
interestingly, Gad-Elrab et al. [2020] propose different ways to reify concept memberships –
adopting them in ConFormA is a promising research direction.

Concept Learning for Deep Graph Classification. Ying et al. [2018] introduce
a differentiable graph pooling module in graph neural networks (GNNs) to for perform
hierarchical clustering of nodes in graphs. While improving the accuracy over small-scale
graph classification benchmarks, their work cannot be readily adapted to link prediction on
KGs and would not scale to large benchmark KGs, such as those used in our experiments.

Data Augmentation for Link Prediction. Various KG augmentation schemes have
been proposed in the neural link prediction literature. E.g., Lacroix et al. [2018] show that
introducing reciprocal relations as explicit triples greatly enhances the performance of KGE
models on many benchmarks. Minervini et al. [2017], instead, temporarily augment a KG
during training by generating sets of adversarial examples that maximize an inconsistency
loss encoding certain background knowledge.
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Table 1: Statistics of knowledge graphs. Train, val and test denote the number of facts in
the training, validation and test sets, respectively. |E| and |R| represent the number
of unique entities and relations in the KG. RD and ED are measures of relation
and entity density, respectively.

Train Valid Test |E| |R| RD ED

UMLS 5,216 652 661 135 46 113 77
WN18RR 86,835 3,034 3,134 40,943 11 7,891 4
FB15k-237 272,115 17,535 20,466 27,395 237 1,148 38

6. Experiments

In this Section, we aim to answer the following research questions: Q1) are the concepts
learned by ConFormA and ConFormAE semantically-meaningful?, Q2) can unsupervised
concept learning boost neural link prediction performance?, Q3) can concept reification help
alleviate the cold-start problem in sparse in KGs?, and Q4) how does augmentation impact
generalization over rare relation types?. We proceed by outlining our experimental setting.

Datasets. We perform experiments on three datasets: WN18RR [Dettmers et al., 2018]
and FB15k-237 [Toutanova and Chen, 2015] – two large benchmark KGs and UMLS [McCray,
2003] – a small biomedical KG. Summary statistics of the entity and relation distributions
for each dataset are shown in Table 1. The two large KGs come with unique challenges –
in FB15k-237, the number of predicates is relatively high (Table 1), and it may be difficult
to jointly model all of them. In WN18RR, on the other hand, most entities are sparsely
represented in the training set. As in [Pujara et al., 2017], we consider the sparsity of each
graph by computing the entity density (ED) and relation density (RD), i.e., the average
number of triples per entity or relation: RD = |T |/|R|, ED = 2|T |/|E| where |T | is the
number of train triples. We note that the entity density in WN18RR is extremely low, with
each entity occurring on average in only four triples (Table 1).

Baselines. To investigate the ability of ConFormA and ConFormAE to work with
different out-of-the-box neural link predictors, we employ two different baselines: Com-
plEx [Trouillon et al., 2016] and DistMult [Yang et al., 2015a]. For all experiments we used
the nuclear N3 norm [Lacroix et al., 2018] as a regularizer, the standard multi-class loss
proposed by Lacroix et al. [2018], and the AdaGrad optimizer [Duchi et al., 2011]. Hyperpa-
rameter values can be found in Appendix G. We trained each model till convergence for 100
epochs and computed the filtered Mean Reciprocal Rank (MRR) and HITS@K [Bordes et al.,
2013] every 3 epochs on the validation and test sets. The highest validation performance was
extracted and the corresponding test performance was reported.

ConFormA.We use the propositionalization scheme leveraging random paths proposed
by Das et al. [2020]. To construct the vector embeddings, we represent each entity e ∈ E
using p where each entry pi is given by the number of times we have traveled along relation
ri across the n paths. We distinguish as to whether we have traveled along a relation in the
forward or inverse direction, hence the resulting embeddings are p ∈ R2Nr . We clustered
the resulting representations using the Spectral Clustering algorithm [Ng et al., 2001] using
the default parameters, and the number of clusters in {50, 100, 500, 1000} for WN18RR and
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Table 2: Fragments of prototypical concepts learned for FB15K-237 by ConFormA and for
WN18RR by ConFormAE, using ComplEx with k = 2000.

FB15K-237: ConFormA WN18RR: ConFormAE

Concept 1 Concept 2 Concept 3 Concept 1 Concept 2 Concept 3

political satire hypothyroidism Royal College of Music mathematics bird family russia
absurdism Crohn’s disease Royal Academy of Music physics arthropod genus norway
experimental film yellow fever Moscow Conservatory psychology asterid dicot genus israel
Surrealism angina pectoris Manhattan School of Music computer science arthropod family mexico
independent film pancreatitis Milan Conservatory chemistry fish family antarctica

FB15k-237, and {30, 50, 100} for UMLS. The hyperparameters for training the neural link
predictors were selected with the baseline model on a held-out validation set.

ConFormAE. To train ConFormAE we experimented with initializing cluster mem-
berships in two ways: randomly and using memberships learned via clustering of simple
propositionalized embeddings, such as those used for ConFormA. We found that in most
cases a random initialization performed competitively and reduced compute time hence this is
the strategy we have opted to use throughout this work. To obtain the ConFormAE results
quoted in Table 3 the initial number of clusters was in {50, 100, 500, 1000}. Our experiments
showed that setting n = 1 i.e., training the neural predictor for one epoch after every E-step
was sufficient for fast convergence (see Appendix G). Again, we use the same hyperparameters
used for the baselines. 2

Experimental Results. In order to answer Q1 we first perform a qualitative analysis:
we inspect the entities which form the concepts learned by ConFormA and ConFormAE on
UMLS, FB15k-237 and WN18RR. Excerpts of prototypical clusters learned by ConFormA
and ConFormAE are shown in Table 2, while full clustering of UMLS and further examples
can be found in Appendix C. Across all datasets entities appear to be meaningfully clustered
into e.g., diseases, music schools and geographical locations. Next, we strengthen our analysis
with a quantitative evaluation: we compare against ground truth concept information related
to the semantic types in UMLS [Bodenreider and McCray, 2003] and the notable_types
in FB15k-237. We report our findings in Appendix D by evaluating cluster matches using
normalized mutual information scores, generalized to deal with overlapping clusters for
FB15k-237. In summary, for UMLS, we find that ConFormA with random paths and
ConFormAE outperform clustering neural link predictor embeddings and recover the group
information rather faithfully, with ConFormAE achieving the best scores overall (Table 10).
For FB15k-237, we find that across all 3 approaches the NMI is relatively low, indicating
that all the methods struggle to recover the concepts as specified by types. Nevertheless,
even in this scenario ConFormAE delivers the best scores (Tables 11 and 12).

Hence, we can answer Q1 affirmatively and note one advantage of ConFormAE over
ConFormA– ConFormAE can yield meaningful concepts from random cluster initialization,
without requiring any a priori knowledge on the structure of the KG.

To answer Q2 Table 3 reports the MRR and Hits@K for ConFormA and ConFormAE,
for different values of embedding size k, after a grid search on regularizers, batch-size and

2. Code is available at: https://github.com/AgaDob/conformae
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Table 3: MRR and Hits at K (H@K) for ConFormA and ConFormAE when using
DistMult or ComplEx as baselines on WN18RR and FB15k-237 for different values
of embedding size (k). Each configuration was repeated with 30 random seeds, and
we report the means of each metric. For assessing whether the MRR values are
significantly higher than the baseline, we used a one-sided Wilcoxon signed-rank
test, where N (resp. M) denotes a p-value ≤ 0.01 (resp. 0.1).

ComplEx DistMult

k Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

W
n
18

r
r

500
Baseline 48.06 43.71 49.73 56.57 44.23 40.21 45.34 52.72

ConFormA 48.48 N 43.83 50.23 57.65 44.33 M 40.15 45.36 53.19
ConFormAE 48.51 N 44.05 50.13 57.40 44.36 N 40.29 45.28 53.10

1000
Baseline 48.58 44.18 50.21 57.16 44.53 40.34 45.68 53.20

ConFormA 49.13 N 44.43 50.82 58.57 45.59 N 41.25 46.76 54.72
ConFormAE 48.99 N 44.45 50.60 58.12 45.15 N 40.83 46.35 54.31

2000
Baseline 48.81 44.39 50.41 57.45 45.17 40.89 46.49 53.91

ConFormA 49.28 N 44.63 50.94 58.73 44.92 40.59 46.08 53.76
ConFormAE 49.14 N 44.63 50.75 58.22 44.96 40.65 46.04 53.92

F
B

15
k
23

7

500
Baseline 35.99 26.60 39.54 54.90 34.82 25.52 38.24 53.64

ConFormA 35.97 26.55 39.50 54.98 34.86 N 25.55 38.29 53.68
ConFormAE 36.06 N 26.66 39.53 55.08 34.95 N 25.67 38.29 53.68

1000
Baseline 36.11 26.68 39.65 55.15 34.95 25.61 38.42 53.73

ConFormA 36.20 M 26.69 39.71 55.20 35.32 N 25.59 38.50 53.89
ConFormAE 36.25 N 26.72 39.72 55.28 35.35 N 25.62 38.52 53.88

2000
Baseline 36.26 26.83 39.79 55.33 35.39 25.99 38.86 54.37

ConFormA 36.31 N 26.86 39.86 55.39 35.49 N 26.11 38.89 54.49
ConFormAE 36.35 N 26.95 39.84 55.44 35.50 N 26.12 38.94 54.48

learning rates for the baselines. We report additional results in Appendix E where we
quantitatively inspect which triples benefit most from concept learning and report results
with TuckER [Balazevic et al., 2019] – an additional neural link predictor. In general, we
see a consistent boost over both DistMult and ComplEx baselines. The boost is especially
striking on WN18RR. For example, a smaller (k = 500) model learned by ConFormA
or ConFormAE is equally good or better than a much larger one (k = 2000) learned by
ComplEx in terms of in terms of H@10. If we perform additional augmentations, such as
adding reciprocal relationships [Lacroix et al., 2018] we find that the improvements from
the two methods are additive, as reported in Appendix B. For FB15k-237 we also see an
improvement in Table 3, though of a smaller magnitude. This can be explained by the fact
that WN18RR is a much sparser KG and as such it can benefit more from our concept learning
scheme. Therefore, we hypothesize that the concept reification and explicit augmentation
might be especially beneficial for performing link prediction in a small data regime and thus
alleviate the cold-start problem [Bobadilla et al., 2012]. To verify this (Q3), we performed a
series of sparsification experiments, decreasing the percentage of training triples available
to the propositionalisation algorithm and to the link predictor. Fig. 2 and Table 4 show
the relative improvement upon the baseline in terms of MRR for the percentage of retained
triples in {5, 7, 10, 20, . . . , 90}. Across all configurations we see a clear boost, more evident
for few training triples. For WN18RR, ConFormA and ConFormAE improve over 80%
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Figure 2: MRR of ConFormA, ConFormAE, and ComplEx on sparsified WN18RR and
FB15K-237 KGs, where the percentage of training triples is in {5, 7, 10} for different
values of embedding size (k). Each experiment was repeated with 6 different random
seeds. Results for other baselines and embedding sizes are shown in Table 25.

20 40 60 80
Percentage of retained triples 

0

20

40

60

80

%
 R

el
at

iv
e 

Im
pr

ov
em

en
t (

M
R

R
) WN18RR: ComplEx

k
500
1000
2000
Model
ConFormA
ConFormAE

20 40 60 80
Percentage of retained triples 

0

20

40

60

80

%
 R

el
at

iv
e 

Im
pr

ov
em

en
t (

M
R

R
) WN18RR: DistMult

20 40 60 80
Percentage of retained triples 

10

0

10

20
%

 R
el

at
iv

e 
Im

pr
ov

em
en

t (
M

R
R

) FB15K-237: ComplEx

20 40 60 80
Percentage of retained triples 

10

0

10

20

%
 R

el
at

iv
e 

Im
pr

ov
em

en
t (

M
R

R
) FB15K-237: DistMult

Table 4: Relative improvement in MRR for ConFormA and ConFormAE upon the baseline
models – either DistMult or ComplEx – on sparsified WN18RR and FB15k-237
KGs for different values of embedding size (k). Each experiment was repeated with
6 different random seeds.

w.r.t. their baselines when only 5% of training data is available. For FB15k-237, we also
see a consistent boost, though there is some stochasticity for less than 20% training triples -
this is likely due to its large number of predicates which increase the minimum number of
training triples required to learn a good model.

To answer Q4, we inspect how generalization affects different triples after binning
them w.r.t. the frequency (rare, medium, common) of their relations. The bins used to
categorize relations into their frequency-based sub-populations (Table 26) were constructed
by considering the total number of training examples. Fig. 3 reports the relative improvement
of ConFormA and ConFormAE over the baselines on predicate sub-populations in terms
of MRR w.r.t. the baseline for the aforementioned bins. Across all datasets, the largest
improvement is observed on the rare predicates sub-population, with relative improvements
of up to 8% on WN18RR, 15% on UMLS and 2% on FB15k-237 confirming that discovering
concepts and augmenting KGs with them helps neural link predictors on triples whose
predicates are underrepresented.

We note that while generally ConFormA and ConFormAE perform similarly, occa-
sionally randomly-initialized ConFormAE performs worse, as can be seen for FB15k-237 in
Fig. 3. As is the case for other Hard-EM algorithms, the quality of the clustering learned
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Figure 3: Relative improvement on predicate sub-populations in terms of MRR achieved
by ConFormA and ConFormAE over the DistMult baseline on WN18RR and
FB15k-237 for k = 2000, and on UMLS for k = 200 using bins from Table 26.

by ConFormAE depends to a certain extent on the cluster initialization. We find that
the cluster memberships learned by ConFormA through clustering of propositionalized
representations can provide a good initialization for ConFormAE and accelerate conver-
gence. Strictly speaking, ConFormA can be seen as a special case of ConFormAE with a
non-random initialization, where only a series of M-steps is performed.

Lastly, we consider the run-times. Averaging across all embedding sizes, datasets, and six
random trials we find that ConFormA and ConFormAE only add a minimal overhead
over the respective baselines: they are only 1.09 and 1.14 times slower. For example, training
DistMult on WN18RR using k = 2000 for 100 epochs took 176min for the baseline, 211min
for ConFormA and 227min for ConFormAE with random initialization.

7. Conclusions

In this work we have introduced the task of unsupervised concept formation in KGs and
proposed two algorithms to achieve it – ConFormA and ConFormAE – based on entity
clustering and KG augmentation. Our experiments show that our approaches can learn
semantically-meaningful concepts and improve the accuracy on downstream link prediction
tasks. We find that leveraging latent concept information helps neural link predictors
to generalize to rare predicates and is especially beneficial in sparse KGs, where entities
participate in few training triples. Moreover, learning new concepts as entities can help
to automate the construction of KGs and the learned concept representations can be used
for a variety of downstream tasks. While the assumption that every entity participates in
exactly one concept can be unrealistic, it points to exciting future work on learning concept
hierarchies. Lastly, our work also paves the way for principled probabilistic approaches to
elicit discrete latent variables in neural link prediction models.
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Below we provide an extension of the results presented in the main paper. We begin by
presenting an analysis of computational complexity in Appendix A. Next, in Appendix B
we explore combining ConFormA and ConFormAE with another augmentation method
– reciprocal relations [Lacroix et al., 2018] – and find that best results are achieved by
either combining the two approaches, or by our approach alone. In Appendix C we provide
extended examples of the concept clusters learned by ConFormA and ConFormAE, while
in Appendix E we provide further link prediction results, including examples of triples on
which ConFormA and ConFormAE achieve the greatest gains over the baselines, and
sparsification results for a range of embedding sizes and link predictors. Lastly, in Appendix F
we provide additional information about the datasets used and in Appendix G we provide
details of the experimental set-up for replicating our results.

Appendix A. Computational Complexity

The time and space complexity of ConFormA depends on the propositionalization, clus-
tering, and neural link prediction model being used. In our experiments, the random path
propositionalization has time complexity O(kL), where L is the max length of a path and k
is the number of paths, while its space complexity is Θ(kNr).

Clustering. For a vanilla spectral clustering implementation the complexity would
be dominated by the O(N3

e ) cost of computing the Singular Value Decomposition of the
propositionalization embedding matrix P. Alternatively, the K-means algorithm would
require O(tkNeNc) time, where t is the number of iterations and k is the embedding size.

Neural Link Prediction. For the cost of training and evaluating neural link prediction
models, we refer the reader to their respective papers [Bordes et al., 2013, Trouillon et al.,
2016, Yang et al., 2015a, Dettmers et al., 2018, Lacroix et al., 2018]. We refer to [Ruffinelli
et al., 2020] for a comparison of different choices of the loss function on several downstream
link prediction tasks. We point out that, in our case, the number of entities in G becomes
Ne +Nc, as the new set of entities in the augmented KG G′ would include Nc concept entities.

Expectation-Maximization. In ConFormAE, the complexity of the M-step is that
of training the neural link predictor. In the E-step we need to evaluate the score and loop
through all of the entities and all the concepts, which results in O (NeNc) steps. Note
that, in practice, this step can be efficiently parallelized on GPU. In Section 6 we report
average run-times, showing that the computational cost is only marginally higher than that
of an out-of-the-box link predictor: in our experiments, ConFormA and ConFormAE are
respectively only 1.09 and 1.14 times slower than the neural link predictor alone.

Appendix B. Reciprocal Relations with ConFormA/E

Reciprocal relations [Lacroix et al., 2018] is a popular method of augmenting KGs by
introducing an inverse of every relation into the graph. In Table 5 we compare link prediction
performance between training neural link predictors on standard KGs, KGs augmented with
inverse relations, training with concept augmentations (ConFormA and ConFormAE)
and lastly, the effect of combining inverse relations with ConFormA and ConFormAE.
Across all datasets and models we find that best performance is achieved either by combining
inverse relations with ConFormA and ConFormAE, or by our method alone.
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Table 5: Comparison of link prediction results between neural link predictors and Con-
FormA and ConFormAE trained on standard KGs and on KGs augmented
reciprocal relations. All results are averages of runs with 5 different random seeds
for the rank of 1000.

FB15K-237 WN18RR

Model Relations MRR Model Relations MRR

ComplEx Standard 36.11 ComplEx Standard 48.58
ComplEx Reciprocal 36.22 ComplEx Reciprocal 48.62
ConFormA Standard 36.20 ConFormA Standard 49.13
ConFormA Reciprocal 36.37 ConFormA Reciprocal 49.25
ConFormAE Standard 36.25 ConFormAE Standard 48.99
ConFormAE Reciprocal 36.28 ConFormAE Reciprocal 48.96

DistMult Standard 35.26 DistMult Standard 44.53
DistMult Reciprocal 35.28 DistMult Reciprocal 44.20
ConFormA Standard 34.95 ConFormA Standard 45.59
ConFormA Reciprocal 35.34 ConFormA Reciprocal 45.45
ConFormAE Standard 35.35 ConFormAE Standard 45.15
ConFormAE Reciprocal 35.35 ConFormAE Reciprocal 45.12

Table 6: Fragments of prototypical concepts learned for FB15K-237 by ConFormAE, using
ComplEx with k = 2000.

FB15K-237: ConFormAE

Concept 1 Concept 2 Concept 3 Concept 4

Turkey Ridley Scott traditional pop music Academy Award for Best Animated Feature
Lithuania Jerry Bruckheimer electro house Golden Globe Award for Best Animated Feature Film
Kuwait Sidney Lumet electric guitar Grammy Award for Best Music Film
Guatemala Mike Leigh post-rock MTV Video Music Award for Best Pop Video
Sri Lanka Peter Weir street punk Grammy Award

Appendix C. Qualitative Concepts Analysis

In this section we provide further examples of concepts learned by ConFormA and Con-
FormAE. Tables 6 and 7 show fragments of prototypical concepts learned by ConFormA
for WN18RR and by ConFormAE for FB15K-237, respectively, while Table 8 and Table 9
show the full clustering of ConFormAE and ConFormA for UMLS, respectively.
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Table 7: Fragments of prototypical concepts learned for WN18RR by ConFormA, using
ComplEx with k = 2000.

WN18RR: ConFormA

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

carboxyl counterintelligence country spanish-american war quality
aconite cyber-terrorism national capital vietnam war trait
wintergreen oil terrorism geographical area operation desert storm property
protropin military city world war shape
uranyl bioterrorism island battle of britain skill

Table 8: Concepts learned by ConFormAE for UMLS, initialized with 50 random clusters,
using ComplEx with k=200

Concept 1
cell_or_molecular-
_dysfunction,
disease_or_syndrome,
experimen-
tal_model_of_disease,
injury_or_poisoning,
mental_or_behavioral-
_dysfunction,
neoplastic_process,
pathologic_function.

Concept 2
acquired_abnormality,
age_group,
anatomical_abnormality,
congenital_abnormality,
family_group, group, pa-
tient_or_disabled_group,
population_group,
professional_or_occupa-
-tional_group.

Concept 3
biologic_function,
cell_function,
genetic_function,
mental_process,
molecular_function,
organ_or
_tissue_function,
natural_phenomenon-
_or_process,
organism_function,
physiologic_function.

Concept 4
alga, amphibian, animal,
archaen, virus, bacterium,
bird, fish, fungus, human,
invertebrate, mammal,
organism, plant, reptile,
ricktteis_or_chlamydia,
vertebrate.

Concept 5
clinical_attribute,
organism_attribute.

Concept 6
amino_acid_sequence,
body_location_or_region,
body_system,
carbohydrate_sequence,
classification, clinical_drug,
conceptual_entity,
drug_delivery_device,
entity, finding,
functional_concept,
geographic_area,
group_attribute,
idea_or_concept,
intellectual_product,
spatial_concept,
laboratory_or_test_result,
language,
manufactored_object,
medical_device,
molecular_sequence,
nucleotide_sequence,
regulation_or_law,
research_device,
sign_or_symptom.

Concept 7
environmental_effect_of-
_humans, event,
phenomenon_or_process,
qualitative_concept,
quantitative_concept,
temporal_concept,
human_caused_phenome-
non_or_process.

Concept 8
activity, behavior,
health_care_activity,
daily_or_recreational-
_activity,
diagnostic_procedure,
educational_activity,
governamental_or-
_regulatory_activity,
healt_care_related-
_organization,
individual_behavior,
laboratory_procedure,
machine_activity,
social_behavior,
molecular_biology-
_research_technique,
occupational_activity,
organization,
professional_society,
research_activity,
self_help_or_relief-
_organization,
therapeutic_or-
_preventive_procedure.

Concept 9
physical_object.

Concept 10
aminoacid_peptide_or-
_protein, antibiotic, biologi-
cally_active_substance,
biomedical_or-
_dental_material,
body_substance,
carbohydrate, chemical,
chemical_viewed-
_functionally,
chemical_view-
_structurally, eicosanoid,
element_ion_or_isotope,
enzyme, food,
hazardous_or-
_poisonous_substance,
hormone,
immunologic_factor,
indicator_reagent_or-
_diagnostic_aid,
inorganic_chemical, lipid,
neuroactive_substance_or-
_biogenic_amine,
nucleic_acid_nucleoside-
_or_nucleotide,
organic_chemical,
organophosphorus-
_compound,
pharmacologic_substance,
receptor, steroid, substance,
vitamin.
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Table 9: Concepts learned by ConFormA for UMLS using ComplEx with k=200 by clus-
tering random paths representations using Spectral Clustering, with the number of
clusters set to 20.

Concept 1
clinical_drug, food,
indicator_reagent_or-
_diagnostic_aid, chemical,
organophosphorus-
_compound,
chemical_viewed-
_functionally,
biomedical_or-
_dental_material, lipid,
chemical_viewed-
_structurally,
amino_acid_peptide-
_or_protein,
organic_chemical,
carbohydrate,
nucleic_acid_nucleoside-
_or_nucleotide,
element_ion-
_or_isotope, steroid,
eicosanoid,
inorganic_chemical

Concept 2
conceptual_entity,
spatial_concept, activity,
idea_or_concept.

Concept 3
cell_component,
body_location_or_region,
body_substance,
anatomical_structure,
body_space_or_junction,
gene_or_genome,
fully_formed-
_anatomical_structure,
tissue, cell,
embryonic_structure,
body_part_organ-
_or_organ_component.

Concept 4
regulation_or_law,
classification,
intellectual_product.

Concept 5
molecular_sequence,
language, body_system,
carbohydrate_sequence,
nucleotide_sequence,
amino_acid_sequence,
functional_concept.

Concept 6
plant, alga, bacterium,
fungus,
rickettsia_or_chlamydia,
virus.

Concept 7
quantitative_concept,
laboratory_or_test_result.

Concept 8
qualitative_concept,
finding, sign_or_symptom.

Concept 9
research_device,
drug_delivery_device,
manufactured_object,
medical_device.

Concept 10
molecular_biology-
_research_technique,
diagnostic_procedure,
research_activity,
laboratory_procedure.

Concept 11
invertebrate, archaeon,
organism, bird, fish,
amphibian, animal, reptile,
human, mammal,
vertebrate.

Concept 12
occupation_or_discipline,
biomedical_occupation-
_or_discipline.

Concept 13
organism_attribute,
natural_phenomenon-
_or_process,
temporal_concept,
mental_process,
genetic_function,
molecular_function,
biologic_function,
cell_function,
organ_or_tissue_function,
physiologic_function,
organism_function.

Concept 14
population_group,
professional_or-
_occupational_group,
machine_activity,
group_attribute, group,
age_group, family_group,
pa-
tient_or_disabled_group.

Concept 15
clinical_attribute,
anatomical_abnormality,
acquired_abnormality,
congenital_abnormality,
health_care_activity,
injury_or_poisoning,
pathologic_function,
experimental_model-
_of_disease,
mental_or_behavioral-
_dysfunction,
disease_or_syndrome,
neoplastic_process,
cell_or_molecular-
_dysfunction,
therapeutic_or-
_preventive_procedure.

Concept 16
event, entity,
physical_object, substance.

Concept 17
human_caused-
_phenomenon_or_process,
phenomenon_or_process,
environmen-
tal_effect_of_humanst.

Concept 18
professional_society,
organization, health_care-
_related_organization,
self_help_or-
_relief_organization.

Concept 19
governmental_or-
_regulatory_activity,
educational_activity,
geographic_area, behavior,
daily_or_recreational-
_activity, social_behavior,
occupational_activity,
individual_behavior.

Concept 20
hazardous_or-
_poisonous_substance,
antibiotic,
neuroreactive_substance-
_or_biogenic_amine,
pharmacologic_substance,
vitamin, hormone,
immunologic_factor,
enzyme, receptor, biologi-
cally_active_substance.

19



Dobrowolska, Vergari, & Minervini

Appendix D. Quantitative Cluster Analysis

D.1 UMLS

To quantify the cluster quality, we compare our learned clusters against ground-truth clusters
available for UMLS and FB15k-237. Specifically. for UMLS we utilize the semantic group
information [Bodenreider and McCray, 2003], which is composed of groups such as Physiology,
Living Beings, Concepts & Ideas, and Chemicals & Drugs. Altogether, semantic groups
amount to 14 disjoint clusters, constructed on the basis of semantic validity, parsimony,
completeness and utility. Table 10 summarizes our results: ConFormA and ConFormAE,
both with random paths initialization, score higher NMI than clustering directly over neural
link predictor embeddings. By manually inspecting the clusters, we can furthermore say that
all approaches recover the group information rather faithfully.

D.2 FB15K-237

To assess the quality of concepts learned for FB15K-237 we utilize the notable_type
information available in Freebase. Extracting this information for all entities in FB15K-237
gives rise to 3.8k overlapping clusters, with cluster sizes ranging from 14.5k entities to
single-entity clusters. Comparing against the entire set of the overlapping ground-truth
clusters would not be very informative in our case, as in this work we have restricted ourselves
to smaller numbers of disjoint clusters. Instead, we propose the following two approaches:

1. Comparison against Top 100 Clusters We select the 100 largest clusters from
the ground truth clustering – jointly, these cover all of the entities in FB15K-237,
some more than once. The resulting clusters range from concepts such as abstract,
animate and person, through to award nominee, film and educational institution. In
order to compare the learned clusterings against the ground truth, we compute the
Normalized Mutual Information (NMI) for overlapping clusters [Lancichinetti et al.,
2009], comparing the quality of clusters obtained through clustering vanilla ComplEx
and DistMult embeddings against random-paths-initialized ConFormA and random-
paths-initialized ConFormAE. The results are reported in Table 11.

2. Boolean Cluster Matching While comparing only against the largest clusters can
assess how well the clusters capture global properties of the entities, it does not allow
us to assess the quality of more fine-grained clusters. To address this, we propose
the following comparison: firstly, we describe each cluster using a Boolean vector
such that each entry of the vector corresponds to the presence or absence of a given
entity in a cluster. Next, we use the Jaccard Index to find for each learned cluster the
closest corresponding cluster in the set of ground truth clusters. Lastly, we compute
NMI between the entire clustering learned by random-paths-initialized ConFormA or
random-paths-initialized ConFormAE, and the selected set of ground-truth clusters.
The resulting NMIs can be found in Table 12.

We find that across all 3 approaches the NMI is relatively low, indicating that all
the methods struggle to recover the ground truth information as defined by the notable
type information in FB. It is worth noting, however, that ConFormA with relatively
low-dimensional random paths representations, p ∈ R2Nr where Nr = 237 for FB15K-237,
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Table 10: Normalized Mutual Information (NMI) between the learned clustering and the
semantic group information for UMLS [Bodenreider and McCray, 2003]. Baselines
were obtained by clustering the vanilla ComplEx and DistMult embeddings using
Spectral Clustering with the number of clusters set to 15. ConFormA clusterings
were obtained by clustering random paths representations. It is worth noting that
the performance of random paths ConFormA clustering is independent of the
neural link predictor used. ConFormAE clusters were obtained by initializing
them with clustered random paths. Across all runs neural link predictor embeddings
of rank 200 were used.

Model Baseline ConFormA ConFormAE

ComplEx 0.766 0.774 0.788
DistMult 0.754 0.774 0.798

Table 11: Normalized Mutual Information (NMI) between the learned clustering and top 100
largest clusters in notable type clustering on FB15k-237. Baselines were obtained by
clustering the vanilla ComplEx and DistMult embeddings using Spectral Clustering
with the number of clusters set to 100. ConFormA clusterings were obtained by
clustering random paths representations. It is worth noting that the performance
of random paths ConFormA clustering is independent of the neural link predictor
used. ConFormAE clusters were initialized using clustered random paths. Results
are shown for model rank, k, in {500, 1000, 2000}.

Model k Baseline ConFormA ConFormAE

ComplEx
500 0.104 0.121 0.150
1000 0.094 0.121 0.151
2000 0.089 0.121 0.094

DistMult
500 0.110 0.121 0.166
1000 0.106 0.121 0.129
2000 0.101 0.121 0.157

consistently outperforms clustering even significantly larger neural link predictor embeddings.
Furthermore, across both, Table 11 and Table 12, ConFormAE initialized with random
paths representations improves upon nearly all other scores.

Qualitatively inspecting the cluster matches with the highest Jaccard scores (Table 13)
we find, as expected, that the model learns a concept which is very similar to the ground
truth. In the case of the lowest Jaccard scores (Table 14) we find that despite the scores
being low, concepts learned by ConFormA and ConFormAE are not in themselves poor
quality or random. Rather, the issue lies in that the closest corresponding notable_types
cluster encodes a very different meaning, resulting in poor overlap between the entities.
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Table 12: Normalized Mutual Information (NMI) between the learned clustering and 100
clusters selected from the notable type database via matching clusters using the
Jaacard Index. Baselines were obtained by clustering the vanilla ComplEx and
DistMult embeddings using Spectral Clustering with the number of clusters set
to 100. ConFormA clusterings were obtained by clustering random paths repre-
sentations. It is worth noting that the performance of random paths ConFormA
clustering is independent of the neural link predictor used. ConFormAE clusters
were initialized using clustered random paths.

Model k Baseline ConFormA ConFormAE

ComplEx
500 0.214 0.251 0.311
1000 0.213 0.251 0.294
2000 0.181 0.251 0.242

DistMult
500 0.175 0.251 0.367
1000 0.187 0.251 0.276
2000 0.176 0.251 0.360

Appendix E. Link Prediction Results

In this section we provide additional link prediction performance results of our method. In
Table 15 we report experiments investigating the impact of performing link prediction with
ConFormA using concepts learned via directly clustering ComplEx embeddings. We find
that in most cases the augmentation either degrades the performance or there is no significant
improvement. Tables 17 to 22 show top 10 test triples for which our method achieves greatest
improvement over the baseline neural link predictor. In Table 16 we visualize link prediction
results shown earlier in tabular form (Table 3) and in Table 23 we provide link prediction
performance for UMLS. In Table 24 we include link prediction results with Tucker, an
additional neural link prediction model. Lastly, in Table 25 we provide an extension of results
for link prediction on sparsified KGs, showing results for both, ComplEx and DistMult, for a
range of embedding sizes.

E.1 Link Prediction with TuckER

To further demonstrate that our method can improve upon a wide range of neural link
predictors and embedding sizes, we report link prediction results with TuckER [Balazevic
et al., 2019] – a recent neural link predictor which has achieved competitive performance for
small embedding sizes.

To compute the TuckER baselines for ranks k in {50, 100, 500}, following the training
set-up described in [Balazevic et al., 2019], we used the Adam optimizer [Kingma and Ba,
2015] and performed a gridsearch over the learning rates in {0.1, 0.05, 0.01, 0.005, 0.001,
0.0005, 0.0001}. We set the predicate embedding size equal to the entity embedding size for
both datasets. A batch-size of 128 and learning rate decay of 1.0 were held constant for all
experiments.
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Table 13: Examples of concepts learned by ConFormA and ConFormAE for FB15K-237
alongside their ground-truth examples, with some of the highest Jaccard Index
scores in the entire clustering – 1.0 for ConFormAE and 0.952 for ConFormA,
using ComplEx with k=500 and 100 clusters.

Ground Truth
<film.film_
festival_event>
2010 Sundance Film
Festival,
1982 Cannes Film Festival,
62nd Berlin International
Film Festival,
39th Berlin International
Film Festival,
2011 Sundance Film
Festival,
2011 Toronto International
Film Festival,
2009 Sundance Film
Festival,
2008 Sundance Film
Festival,
2012 Sundance Film
Festival,
34th Berlin International
Film Festival,
2009 Toronto International
Film Festival,
59th Berlin International
Film Festival,
2008 Toronto International
Film Festival,
32nd Berlin International
Film Festival,
58th Berlin International
Film Festival,
2000 Cannes Film Festival,
60th Berlin International
Film Festival,
2012 Toronto International
Film Festival,
61st Berlin International
Film Festival,
2010 Toronto International
Film Festival

ConFormA
Concept_72
2009 Sundance Film
Festival,
2000 Cannes Film Festival,
2009 Toronto International
Film Festival,
2008 Toronto International
Film Festival,
59th Berlin International
Film Festival,
1982 Cannes Film Festival,
32nd Berlin International
Film Festival,
34th Berlin International
Film Festival,
39th Berlin International
Film Festival,
60th Berlin International
Film Festival,
2010 Toronto International
Film Festival,
58th Berlin International
Film Festival,
2010 Sundance Film
Festival,
2011 Sundance Film
Festival,
61st Berlin International
Film Festival,
2011 Toronto International
Film Festival,
2012 Sundance Film
Festival,
62nd Berlin International
Film Festival,
2012 Toronto International
Film Festival

Ground Truth
<sports.sports
_league_draft>
2005 Major League
Baseball draft,
2005 NFL Draft,
2007 NBA Draft,
2004 NFL Draft,
2006 Major League
Baseball draft,
2002 Major League
Baseball draft,
2003 NFL Draft,
2006 NFL Draft,
2005 NBA Draft,
2003 NBA Draft,
2007 NFL Draft,
1997 Major League
Baseball draft,
2004 NBA Draft,
1995 Major League
Baseball draft,
2008 NBA Draft,
2004 Major League
Baseball draft,
2003 Major League
Baseball draft,
2007 Major League
Baseball draft,
2006 NBA Draft,
2008 NFL Draft

ConFormAE
Concept_36
2005 Major League
Baseball draft,
2005 NFL Draft,
2007 NBA Draft,
2004 NFL Draft,
2006 Major League
Baseball draft,
2002 Major League
Baseball draft,
2003 NFL Draft,
2006 NFL Draft,
2005 NBA Draft,
2003 NBA Draft,
2007 NFL Draft,
1997 Major League
Baseball draft,
2004 NBA Draft,
1995 Major League
Baseball draft,
2008 NBA Draft,
2004 Major League
Baseball draft,
2003 Major League
Baseball draft,
2007 Major League
Baseball draft,
2006 NBA Draft,
2008 NFL Draft

Link prediction results with TuckER are shown in Table 24, where we find that Con-
FormA and ConFormAE consistently outperform the baseline TuckER model for nearly
all of the configurations.
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Table 14: Examples of concepts learned by ConFormA and ConFormAE for FB15K-237
alongside their ground-truth examples, with some of the lowest Jaccard Index
scores in the entire clustering – 0.111 for ConFormAE and 0.036 for ConFormA,
using ComplEx with k=500 and 100 clusters.

Ground Truth
<default_domain.facts-
_from_the_community>
Republican Party

ConFormAE
Concept_84
Communist Party of the
Soviet Union,
Communist Party of India
(Marxist),
Kuomintang,
Republican Party,
Whig Party,
Democratic-Republican
Party,
Federalist Party,
Democratic Party,
Canadian Alliance.

Ground Truth
<terrorism.terrorist
_organization>
al-Qaeda,
Hamas,
Hezbollah

ConFormA
Concept_11
Austria-Hungary, Kingdom
of Great Britain, Byzantine
Empire, Empire of Japan,
Kingdom of Naples,
Russian Soviet Federative
Socialist Republic,
Kingdom of Romania,
Spanish Empire, Kingdom
of Sardinia, Prussia,
Kingdom of Portugal,
House of Plantagenet,
Kingdom of Italy, Hamas...

Appendix F. Datasets

For each of the datasets used to evaluate our approach – UMLS, WN18RR and FB15K-237
– we provide the frequency bins shown in Table 26 used to divide relations into frequency
sub-populations for computing the link prediction results in Fig. 3.
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Table 15: Performing ConFormA using concepts learned via clustering of ComplEx embed-
dings for WN18RR and FB15K-237, for a range of embedding sizes (k) and varying
the number of clusters (Nc), implemented with reciprocal relations. The x-axis
corresponds to the performance of the baseline ComplEx model while the y-axis
shows the performance of ConFormA. Points appearing above the diagonal line
indicate outperforming the baseline. Plots in the right column magnify selected
regions of plots in the left column.

Appendix G. Training Details

G.1 Baselines

To obtain the best parameters for the baselines, we ran the same grid search for all of the
datasets on both, ComplEx and DistMult, with the ranks set to {50, 100, 200} for UMLS and
{500, 1000, 2000} for WN18RR and FB15K-237, using the standard train/validation/test
splits. The grid consisted of three batch-sizes in {50, 100, 500}, three learning rates:
{10−1, 10−2, 10−3} and six regularization strengths in {10−3, 5× 10−3, . . . , 10−1, 5× 10−1}.

G.2 ConFormA

Propositionalisation To generate the representations we explored the parameter range
suggested by Perozzi et al. [2014], using a minimum path length of 2, maximum path length in
{3, 5, 10, 20, 30} and two number of paths parameters: 32 and 64. We found that the maximum
path length parameter was most influential in determining how well a representation captured
the characteristics of a given KG. For both, WN18RR and FB15K-237, we found that setting
maximum path length to 5 and number of paths to 64 gave competitive results.
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Embedding Size
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Table 16: MRR and Hits (H) at 1, 5, 10, 50 for ConFormA and ConFormAE when using
ComplEx as baseline models on WN18RR and FB15K-237 KGs for different values
of embedding size (k). Each configuration has been repeated with 30 different
random seeds.

Table 17: Top 10 UMLS test triples with greatest improvement of ConFormA over baseline
ComplEx model, for k = 50.

UMLS Test Triple Reciprocal Rank

s p o Baseline ConFormA

mental_process isa organism_function 0.06 1.0
disease_or_syndrome occurs_in mental_or_behavioral_dysfunction 0.2 1.0
finding isa conceptual_entity 0.25 1.0
steroid interacts_with eicosanoid 0.33 1.0
tissue adjacent_to body_space_or_junction 0.33 1.0
embryonic_structure location_of virus 0.33 1.0
machine_activity isa activity 0.33 1.0
antibiotic interacts_with biologically_active_substance 0.5 1.0
congenital_abnormality complicates anatomical_abnormality 0.5 1.0
carbohydrate affects mental_process 0.5 1.0
laboratory_or_test_result co-occurs_with sign_or_symptom 0.5 1.0

Clustering Algorithm We experimented with clustering the propositionalised represen-
tations using a number of clustering algorithms: K-Means, Spectral Clustering, Affinity
Propagation and DBSCAN. Across these, we have found no significant difference in perfor-
mance in terms of both, cluster quality and downstream link prediction performance, hence
we used Spectral Clustering for all experiments.

Number of clusters The number of clusters was treated as a hyperparameter and chosen
from {50, 100, 500, 1000} for FB15K-237 and WN188R, and from {30, 50, 100} for UMLS.
As shown in Fig. 4, lower numbers of clusters on average resulted in better link prediction
performance.

26



Neural Concept Formation in Knowledge Graphs

Table 18: Top 10 UMLS test triples with greatest improvement of ConFormAE over
baseline ComplEx model, for k = 50.

UMLS Test Triple Reciprocal Rank

s p o Baseline ConFormAE

mental_process isa organism_function 0.06 1.0
environmental_effect_of_humans isa phenomenon_or_process 0.14 1.0
cell part_of body_part_organ_or_organ_component 0.2 1.0
neuroreactive_substance_or_biogenic_amine isa biologically_active_substance 0.2 1.0
human_caused_phenomenon_or_process isa event 0.25 1.0
fully_formed_anatomical_structure location_of virus 0.25 1.0
steroid interacts_with eicosanoid 0.33 1.0
cell_component location_of body_space_or_junction 0.33 1.0
cell_component location_of body_space_or_junction 0.33 1.0
organism_function produces hormone 0.33 1.0
therapeutic_or_preventive_procedure complicates pathologic_function 0.5 1.0

Table 19: Top 10 WN18RR test triples with greatest improvement of ConFormA over
baseline ComplEx model, for k = 500.

WN18RR Test Triple Reciprocal Rank

s p o Baseline ConFormA

latin.n.03 _hypernym person.n.01 0.0 1.0
periwinkle.n.02 _hypernym herb.n.01 0.0 1.0
threepence.n.01 _hypernym coin.n.01 0.0 1.0
stress.n.03 _hypernym emphasis.n.01 0.01 1.0
trade_name.n.01 _member_of_domain_usage clomiphene.n.01 0.01 1.0
red-winged_blackbird.n.01 _hypernym new_world_blackbird.n.01 0.01 1.0
libel.n.01 _synset_domain_topic_of law.n.01 0.09 1.0
merginae.n.01 _member_meronym mergus.n.01 0.14 1.0
saxifraga.n.01 _member_meronym saxifrage.n.01 0.14 1.0
regimentals.n.01 _hypernym military_uniform.n.01 0.17 1.0
new_zealand.n.01 _member_of_domain_region returning_officer.n.01 0.2 1.0

G.3 ConFormAE

Number of epochs, n, per E-Step: To explore the effect of changing the number of
epochs, n, per E-step, we trained a range models and embedding sizes, varying n in {1, 2, 3, 5}.
We found that n = 1 provided a good compromise in terms of link prediction performance
across different embedding sizes, datasets and neural link predictors - a visualization for
WN18RR can be found in Figure Fig. 5.

Cluster initialization: Between the two initialization methods we experimented with
– random initialization and Spectral Clustering of random paths propositionalisation – we
found no significant difference in performance, hence we used random initialization by default
due to its reduced complexity, unless the contrary is specified.

Number of clusters: We used the same ranges to select the number of clusters as for
ConFormA. It is worth noting, however, that while for ConFormA the number of clusters
is fixed, in ConFormAE that number of clusters can decrease during training if no entities
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Table 20: Top 10 WN18RR test triples with greatest improvement of ConFormAE over
baseline ComplEx model, for k = 500.

WN18RR Test Triple Reciprocal Rank

s p o Baseline ConFormAE

periwinkle.n.02 _hypernym herb.n.01 0.0 1.0
trade_name.n.01 _member_of_domain_usage clomiphene.n.01 0.01 1.0
ranunculaceae.n.01 _member_meronym isopyrum.n.01 0.04 1.0
shiite.n.01 _hypernym muslim.n.01 0.05 1.0
sapindaceae.n.01 _member_meronym genus_harpullia.n.01 0.08 1.0
libel.n.01 _synset_domain_topic_of law.n.01 0.09 1.0
right_to_vote.n.01 _synset_domain_topic_of law.n.01 0.12 1.0
united_states.n.01 _has_part missouri.n.02 0.14 1.0
compositae.n.01 _member_meronym balsamorhiza.n.01 0.17 1.0
cupressaceae.n.01 _member_meronym taxodium.n.01 0.17 1.0
plural.n.01 _member_of_domain_usage sunglasses.n.01 0.17 1.0

Table 21: Top 10 FB15K-237 test triples with greatest improvement of ConFormA over
baseline ComplEx model, for k = 500.

FB15K-237 Test Triple Reciprocal Rank

s p o Baseline ConFormA

Ocean Software /business/[. . . ]/industry video game 0.0 1.0
Alaska /location/[. . . ]/contains Nome Census Area 0.01 1.0
Republican Party /government/[. . . ]/politician Kevin Smith 0.03 1.0
Bancroft Prize /award/[. . . ]/category_of Bancroft Prize 0.03 1.0
Kate Hudson /people/[. . . ]/type_of_union domestic partnership 0.03 1.0
Jacqueline Bisset /people/[. . . ]/gender female organism 0.05 1.0
Slumdog Millionaire /film/[. . . ]/film_release_region United States of America 0.05 1.0
Phil LaMarr /people/[. . . ]/profession actor 0.05 1.0
FilmFlex /film/[. . . ]/film Night at the Museum 0.06 1.0
The Portrait of a Lady /film/film/genre film adaptation 0.07 1.0
Australia /location/[. . . ]/currency Australian dollar 0.07 1.0

are assigned to some concepts. The number of clusters specified in Fig. 4 for ConFormAE
corresponds to the initial number of clusters.

G.4 Evaluation

During evaluation, we only consider the triples and entities appearing in the original dataset,
to make sure the evaluation metrics for ConFormA and ConFormAE are computed using
exactly the same protocol as for the baselines.
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Table 22: Top 10 FB15K-237 test triples with greatest improvement of ConFormAE over
baseline ComplEx model, for k = 500.

FB15K-237 Test Triple Reciprocal Rank

s p o Baseline ConFormAE

Ocean Software /business/[. . . ]/industry video game 0.0 1.0
Republican Party /government/[. . . ]/politician Kevin Smith 0.03 1.0
Bancroft Prize /award/[. . . ]/category_of Bancroft Prize 0.03 1.0
The Untouchables /film/[. . . ]/genre crime fiction 0.03 1.0
Slumdog Millionaire /film/[. . . ]e/film_release_region United States of America 0.05 1.0
Seattle University /education/[. . . ]/student Duff McKagan 0.06 1.0
Ryan Reynolds /people/[. . . ]/nationality Canada 0.06 1.0
Satellite Awards 2008 /award/[. . . ]/award_winner Tom McCarthy 0.08 1.0
Omaha /location/[. . . ]/time_zones Central Time Zone 0.09 1.0
Mr. Nobody /film/[. . . ]/film_release_region Finland 0.09 1.0
The Best Exotic Marigold Hotel /film/[. . . ]/film_release_region Finland 0.09 1.0

Table 23: Mean Reciprocal Rank (MRR) and Hits at K (H@K) for ConFormA and
ConFormAE when using DistMult or ComplEx as baselines on UMLS for different
values of embedding size (k). Each configuration was repeated with 30 random
seeds, and we report the means of each metric.

ComplEx DistMult

k Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

U
M

L
S

50
Baseline 94.64 90.92 98.26 99.59 75.50 66.62 81.01 91.70

ConFormA 94.74 91.10 98.19 99.59 75.36 66.47 80.83 91.72
ConFormAE 95.12 91.92 98.06 99.63 75.76 67.14 81.13 91.67

100
Baseline 95.45 92.34 98.44 99.66 76.13 68.28 80.65 91.42

ConFormA 95.68 92.77 98.46 99.64 76.11 68.07 80.56 91.59
ConFormAE 95.57 92.56 98.48 99.63 76.05 67.85 80.98 91.66

200
Baseline 96.46 94.08 98.84 99.72 76.21 68.37 80.69 91.36

ConFormA 96.29 93.77 98.68 99.70 76.43 68.92 80.52 91.43
ConFormAE 96.47 94.09 98.67 99.75 76.16 68.25 80.85 91.59
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Table 24: Link prediction performance of TuckER with ConFormA and ConFormAE
evaluated on WN18RR and FB15K-237, for a range of embedding sizes, k in
{50, 100, 500}. Each experiment was repeated with 6 different random seeds.

Dataset k Model MRR H@1 H@3 H@5 H@10 H@50

FB15K-237

50
TuckER 28.96 20.59 31.64 37.62 45.86 64.43
ConFormA 29.06 20.71 31.73 37.65 45.88 64.52
ConFormAE 29.01 20.66 31.73 37.55 45.77 64.33

100
TuckER 30.14 21.74 32.87 38.89 47.23 65.52
ConFormA 30.15 21.62 32.76 38.78 47.01 65.22
ConFormAE 30.05 21.57 32.91 38.86 47.21 65.58

500
TuckER 32.85 24.11 36.08 42.17 50.40 67.74
ConFormA 32.98 24.24 36.19 42.35 50.46 68.09
ConFormAE 33.05 24.28 36.34 42.42 50.54 67.93

WN18RR

50
TuckER 43.59 40.86 44.73 46.22 48.54 54.08
ConFormA 43.65 40.81 44.74 46.56 48.93 54.83
ConFormAE 43.18 40.41 44.46 46.00 48.10 53.73

100
TuckER 45.10 42.27 46.31 48.10 50.33 55.32
ConFormA 45.44 42.39 46.80 48.69 51.07 56.68
ConFormAE 44.84 42.02 46.08 47.72 50.04 55.20

500
TuckER 46.01 42.29 48.00 50.05 52.53 58.35
ConFormA 46.59 42.72 48.64 50.71 53.51 59.63
ConFormAE 46.08 42.37 48.09 50.02 52.60 58.28
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Figure 4: The effect of varying the number of concepts on Mean Reciprocal Rank (MRR),
shown for WN18RR and FB15K-237 with ComplEx, using rank size of 1000.
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Table 25: MRR of ConFormA, ConFormAE, and baseline models – either DistMult or
ComplEx – on sparsified WN18RR and FB15K-237, where the percentage of
retained training triples is in {5, 7, 10}, for different values of embedding size (k).
Each experiment was repeated with 6 different random seeds.

Table 26: Bins for categorizing relations into sub-populations based on their frequency, N ,
in the training set.

Sub-population WN18RR FB15K-237 UMLS

Rare N < 103 N < 102 N < 20
Medium 103 < N ≤ 104 102 < N ≤ 103 20 < N ≤ 150
Common N > 104 N > 103 N > 150
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Figure 5: The relative improvement on Mean Reciprocal Rank (MRR) with varying the
number of neural link predictor training epochs between every E-step in ConFor-
mAE, shown for WN18RR with ComplEx and DistMult, with rank size (k) in
{500, 1000, 2000}. Each experiment was repeated with 5 different random seeds
and averages plotted.
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