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Abstract

In human dialogues, utterances do not necessarily carry all the details. As pragmat-
ics studies suggest [Grice, 1975], humans can infer meaning from the situational context
even though the meaning is not literally expressed. It is crucial for natural language
processing models to understand such an inference process. In this paper, we address
the problem of inferring Concepts Out of the Dialogue Context (CODC) in the dialogue
summarization task. We propose a novel framework comprised of a CODC inference
module leveraging external knowledge from WordNet and a knowledge attention mod-
ule aggregating the inferred knowledge into a neural summarization model. To evaluate
the inference capability of different methods, we also propose a new evaluation metric
based on CODC. Experiments suggest that current automatic evaluation metrics of nat-
ural language generation may not be enough to understand the quality of out-of-context
inference in generation results, and our proposed summarization model can provide sta-
tistically significant improvements on both CODC inference and traditional automatic
evaluation metrics, e.g., CIDEr. Human evaluation of the model’s inference ability also
demonstrates the superiority of the proposed model. Codes and data are available at
https://github.com/HKUST-KnowComp/CODC-Dialogue-Summarization.

1. Introduction

Automatically summarizing conversations in our daily lives can benefit users for better or-
ganizing and retrieving their historical information. There have been several approaches to
conversation summarization, including extractive approaches [Xie et al., 2008, Riedhammer
et al., 2010] and abstractive approaches [Oya et al., 2014, Shang et al., 2018]. While extrac-
tive approaches focus on using the seen words in a conversation to summarize it, abstractive
approaches usually use a text generation model to perform summarization.

Different from news articles, in daily dialogues, it is common that a speaker’s utterance
can suggest something that is not literally expressed but can be interpreted by a cooperative
listener. For example, in Figure 1, if a dialogue mentions boat and ocean, the first impression
of an ordinary person would be a boat sailing on the ocean. If, a modifier abandoned is
added to boat, combined with ocean, the previous scene will be canceled and we will think
of a beach or a shore because that is where the abandoned boat and ocean tend to cooccur.
This kind of out-of-context inference is a language phenomenon in the field of pragmatics
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A: Does the ocean appear calm or choppy? 
B: Calm.
A: Can you see any other boats? 
B: One, also abandoned.

Ground : A boat sitting on a beach next to an ocean A small boat is sailing through the ocean

A: Is boat on fire?
B: no , it 's exhaust I think.
A: what kind of water is it on , ocean , lake? 
B: ocean.

Ground :

Figure 1: Two examples in DialSum. We highlight contextual concepts and out-of-context
inference with bold italics and underlined bold italics respectively. “Ground” indicates
ground truth summarizations.

[Grice, 1975]. To comprehensively understand a dialogue where some context is omitted
by the speakers, both a thorough understanding of the context and necessary inference are
required. However, to the best of our knowledge, neither evaluation metrics nor suitable
methods are available for such kind of out-of-context inference currently, even if it is an
easy task for human beings.

To study the phenomenon of out-of-context inference in dialogues, we narrow down the
definition of out-of-context inference to a certain type so that we can automatically evaluate
it. Here, we only focus on summarization’s new concepts that are suggested by existing
concepts in the dialogue context. This is also related to lexical entrainment [Brennan, 1996]
which studies the lexical variability in language use and lexical pragmatics in relevance
theory [Sperber and Wilson, 1986], which studies how to identify and infer concepts from
words via broadening and narrowing contexts. To formally define the inference of new
concepts in summarization, we distinguish a new concept from existing concepts following
three rules according to WordNet [Miller, 1995]: (1) It should not be a general concept.
(2) It should not be a synonym of an existing concept. (3) It should not be a hypernym
(or super-concepts) of an existing concept. In this way, we can distinguish out-of-context
inference from logical entailment or synonym as much as we can. Specifically, we name
them as the Concept Out of the Dialogue Context (CODC.) Current evaluation metrics
are usually based on lexical similarities or overlaps, e.g., BLEU [Papineni et al., 2002],
ROUGE-L [Lin, 2004], METEOR [Lavie and Agarwal, 2007], CIDEr [Vedantam et al.,
2015], etc. Such lexical metrics usually do not care about the recall of the novel words,
and are not precise at evaluating the precision of the out-of-context inference. To tackle
these limitations, we propose and study a new evaluation metric that incorporates CODC
for text generation.

Moreover, to improve the summarization results with the help of CODC inference, we
propose an abstractive summarization framework that includes an out-of-context inference
module to enhance the model’s inference ability. The two-step framework we proposed ba-
sically contains an inference module and an extendable knowledge attention model. In the
inference part, we use word-relatedness features such as co-occurrence, embedding similari-
ties, and WordNet relatedness features to distinguish whether a candidate word is a plausi-
ble out-of-context inference or not. While in the knowledge attention module, we aggregate
the retrieved knowledge from the inference module and apply the attention mechanism to
extract useful information in the decoding steps.

Our contributions are summarized as follows:

1. We address the problem of out-of-context inference in dialogue summarization for
the first time, and provide an elaborative definition of the problem.
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2. We design a related metric based on Concepts Out-of Dialogue Context (CODC) to
evaluate neural models’ ability to infer plausible novel concepts.

3. We proposed Trans-KnowAttn, an abstractive dialogue summarization approach that
incorporates an out-of-context inference (missing-link inference) module and a knowledge
attention module to improve the inference capability in dialogue summarization.

2. Dialogue Summarization Task

We develop our dialogue summarization (DialSum) task based on the VisDial [Das et al.,
2017] dataset. To construct their dataset, VisDial asks two workers on Amazon Mechanical
Turk to chat with each other in real-time to discuss an image in the MSCOCO dataset [Lin
et al., 2014]. The MSCOCO dataset contains human-annotated captions of about 120K
images. Each image has five captions from five different annotators. A “questioner” sees
the caption of the image and another person sees both the caption and the image. The
questioner is asked to ask questions to “imagine the scene better”, and the annotators
usually describe the most prominent concepts in an image. Thus, for each image, we have
both a dialogue from the VisDial dataset and five captions from the MSCOCO dataset. We
align a dialogue with five captions as five alternative summarizations of the dialogue. By
nature, there are many out-of-context inference phenomena behind those utterances, as the
speakers already have the image in mind as their context so that they don’t need to bring
it up again in the dialogue. Assuming a gold summarization y is provided by an annotator,
we evaluate models’ inference ability by how many novel concepts (i.e., noun phrases that
do not appear in the dialogue) in y can be mentioned by ŷ, the generated summary, without
introducing extra noisy concepts. The number of examples in the training, developing, and
testing set are 98,256, 12,282, and 12,083, respectively.

3. CODC-based Evaluation Metric

3.1 Definition of CODC

In this section, we introduce the new metric based on CODC for evaluating models’ con-
ceptual inference ability. Here, by concept, we mean a noun word. As most examples in
our dataset are general objects rather than specific named entities, we use WordNet [Miller,
1995] to check the relations among all the concepts.

For each example in DialSum, which contains a dialog x and a description y, we denote
the concept sets extracted from x and y as Cx and Cy respectively. Then we define the set
of concepts out of dialogue context as

Cy−x = {cy ∈ Cy|∀cx ∈ Cx, I1(cx, cy) = 1)}, (1)

where I1(cx, cy) is the function implementing the following three rules:

• The least depth of all synsets containing cy is no less than δd, where we set δd = 4
empirically (1,790 synsets in total are filtered out.) This rule is to filter out very general
concepts that may be inferred by anything, for example, “entity”.

• The shortest path between any pair of synsets containing cx and cy is greater than 1. This
rule is to filter out concepts that are synonyms of existing concepts in the dialogue.
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Dialogue

A: What color is the closest plane? 

B: Blue.

A: What color is the other plane? 

B: Yellow.

A: Are they flying side by side? 

B: Yes.

A: Do you see any people?

B: No.

A: Do you see propeller on the closet plane? 

B: No.

A: Do you see both wings on furthest plane? 

B: Yes.

A: Do you see both wings on blue plane? 

B: Yes.

A: Can you see the ground?

B: No.

A: Are there any other planes? 

B: No.

A: Do you see any clouds?

B: No.

Description

Two small planes flying with each other in the sky

Description

Two small planes flying with each other in the sky

Dialogue Concepts

plane, propeller, wing, ...

Dialogue Concepts

plane, propeller, wing, ...

CODC

sky

CODC

sky

(b)

Figure 2: (a) Distribution of CODC. (b) An example of out-of-context inference in the
dataset. We also show the corresponding figures from MSCOCO for better demonstration.
The figures are not used in our experiments.

• Any synset of cy is not a hypernym (super-concept) of any synset of cx. This rule is to
avoid entailment for the new concepts as essentially abstractive summarization is able to
perform conceptual abstraction.

To better understand the dataset, we show the distribution of the counts of CODC per
dialogue in Figure 2 (a), for one set of the descriptions in the training set. We can find
that for more than 80% of the training dialogues, one or more CODC should be inferred.
In Figure 2 (b), we show a real example from the dataset, where we can infer the word sky
from the dialogue even if the word is not literally expressed. These observations show that
the out-of-context concepts are common in this dialogue summarization task and further
prove the importance of understanding how well models can generate summarization with
out-of-context concepts.

3.2 CODC Precision, Recall, and F1

As a model with strong inference ability should be able to infer correct new concepts without
introducing wrong ones, inspired by the F1 evaluation metric, we design F1 over CODC
to evaluate models’ inference ability. Let X = {x(1), x(2), ..., x(N)} be all dialogues in the
evaluation set, where N is the size of the dataset, and Y = {Y(1),Y(2), ...,Y(N)} be the
set of ground-truth descriptions. Note that, for each image, we may have K ground-truth

descriptions such that Y(i) = {y(i)1 , ..., y
(i)
K }. Denote the generated summary of the i-th

dialogue as ŷ(i). We then define the precision, recall, and F1 over CODC as follows:

PCODC =

∑N
i=1 maxk |h(x(i), y

(i)
k , ŷ(i))|∑N

i=1 |Cŷ
(i)−x(i) |

,

RCODC =

∑N
i=1 |h(x(i), y

(i)
k∗
i
, ŷ(i))|∑N

i=1 |C
y
(i)

k∗
i
−x(i)

|
,

F1CODC =
2PCODCRCODC

PCODC +RCODC
,

(2)
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Figure 3: Overview of the Trans-KnowAttn framework.

where h(x, y, ŷ) and k∗i are defined as follows:

h(x, y, ŷ) = {cŷ ∈ Cŷ−x|∃cy ∈ Cy−x, I2(cy, cŷ) = 1}, (3)

k∗i = argmaxk∈{1,...,K}
|h(x(i), y

(i)
k , ŷ(i))|

|Cy
(i)
k −x(i) |

, (4)

and I2(cy, cŷ) is the function to determine whether cy and cŷ are identical or entailed
following either of two rules:
• There exists one pair of synsets of cy and cŷ being identical.
• There exists a synset of cŷ being a hypernym of a synset of cy.

Note that a summary can be considered as a plausible generation if it covers a reasonable
amount of CODCs for one of the K descriptions. Based on this idea, for a certain dialogue,
we only focus on the description where the generated sentence performs the best in precision
or recall regarding the inference of CODC. In this case, max operation is selected in the
calculation of precision and recall, which is different from the average operation that is
typically used by previous automatic evaluation metrics in the setting of multi-reference.
Also, by using the max operations, we argue that the theoretical upper bound for CODC
precision, recall, and F1 are 1.0, as any ground-truth description will be scored 1.0 under
the max operation.

4. Knowledge-aware Summarization

In this section, we present Trans-KnowAttn, a knowledge-aware summarization framework
which consists of a missing-link inference module and a flexible knowledge attention module
that can be applied to general encoder-decoder models. An overview of the model is shown
in Figure 3.

4.1 Missing-link Inference Module

The missing-link inference module infers plausible concepts closely related to the concepts
mentioned in the dialogue, while being out of the dialogue context. For example, consid-
ering the dialogue and ground-truth description in Figure 1, given beach and boat that are
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mentioned in the conversation, we find a list that potentially contains the concept beach.
This process is different from simple Knowledge Base Completion in that we want to infer
the missing links between a concept with a set of dialogue concepts.

Following the definitions in the CODC metric, we first build a bipartite knowledge
graph G = (V,E), V = (D,C), that records the co-occurrence information of dialogue
concepts and CODCs in the training set. Here D represents the set of concepts in all
training dialogues, and C represents the set of concepts in CODCs. The weight of each
vertex u(cx), cx ∈ D or u(cy), cy ∈ C is assigned by their total number of occurrences in
the training set. An edge (cx, cy), cx ∈ D, cy ∈ C exists if there are at least one dialogue-
description pairs such that I1(cx, cy) = 1, as has been defined in Equation (1.) The weight
of the corresponding edge u(cx, cy) is the number of co-occurrence of the concept pair in
the training set. Based on the formulation of the co-occurrence graph, we formalize the
inference process as follows:

1. Extract all concepts using rules defined in Section 3 from a dialogue as c
(1)
x , c

(2)
x , . . . , c

(k)
x ,

where k is the number of extracted concepts for dialogue x.

2. Get the set ∪i=1,...,kN(c
(i)
x ) as primitive knowledge candidates, where N(c

(i)
x ) is the set

of neighbors of vertex c
(i)
x in G.

3. Calculate features of all candidates and train a classifier to determine whether a candidate
is a plausible CODC or not. The ground-truth CODCs are calculated based on the definition
in Section 3.

4. In the inference process, use the classifier from the above step and retrieve top m results

ranked by the classifier, among the set ∪i=1,...,kN(c
(i)
x ).

The features we use are described as follow:

Co-occurrence. A simulated co-occurrence feature of a candidate n ∈ ∪i=1,...,kN(c
(i)
x )

given a set of dialogue concepts {c(1)x , . . . , c
(k)
x } is defined as : Pco(n|{c(1)x , . . . , c

(k)
x }) ∝∑k

i=1 log[u(n,c
(i)
x )

u(c
(i)
x )

] , which is an ad-hoc attribute that depicts the log probability that a

candidate concept n will co-occur given all dialogue concepts.

Pre-trained Word Embedding Similarities. We compute the average word embed-

ding similarities of candidate concept n with all the dialogue concepts {c(1)x , . . . , c
(k)
x } as :

1
k

∑k
i=1

e
c
(i)
x
·en

||e
c
(i)
x
||·||en|| , where e

c
(i)
x

and en are embedding vectors of c
(i)
x and n obtained from

existing pretrained vectors such as Word2Vec [Mikolov et al., 2013] and Glove [Pennington
et al., 2014].

WordNet Synset Relatedness. We choose some typical similarity measurements based
on WordNet as an indicator of relatedness, Path Similarity, i.e., the inverse of the number
of nodes visited in the path from one word to another via hypernym hierarchy, LCH Simi-
larity [Leacock et al., 2002], and WuP Similarity [Wu and Palmer, 1994].

4.2 Knowledge Attention Network

Treating the inferred candidate list as knowledge, we provide a knowledge attention mecha-
nism that can be added to general encoder-decoder frameworks. We choose Transformer as
the base architecture of the seq2seq model. To generate summaries, the decoder computes
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Method BLEU-4 METEOR ROUGE-l CIDEr PCODC RCODC F1CODC

BertSum 23.49 22.89 49.38 79.94 36.48 38.90 37.65
S2S-Attn 29.90 24.51 52.45 96.55 44.32 42.46 43.37
PGN 30.12 24.58 52.66 97.97 45.36 42.49 43.88
Pair-encoder 31.26 25.34 53.26 101.04 45.10 44.39 44.74
Trans-Copy 31.09 25.54 53.38 102.81 46.20 44.55 45.36

Trans-KnowAttn 31.22 25.93 53.70 104.00∗ 46.31 45.66∗ 45.98∗

Table 1: Evaluations on conventional metrics and CODC metrics are presented, where bold
scores are the best among all models. ∗ after bold figures indicates the improvements are
statistically significant with p < 0.05.

the hidden states and attends to the knowledge embedding list step by step, adjusting the
current decoder state with the help of the attended knowledge vector. Also, a copy mecha-
nism is used for copying useful candidate words directly from the knowledge candidate list.
The model differs from the standard attention encoder-decoder framework in that an extra
layer of knowledge attention is added to the decoding part. More detailed formulations of
the summarization model are provided in Appendix A.

5. Experiments

5.1 Baselines

We select S2S-Attn [See et al., 2017], PGN [See et al., 2017], Trans-Copy [Vaswani et al.,
2017], PairEncoder [Pan et al., 2018], and BertSum [Liu and Lapata, 2019] as baseline
models:
S2S-Attn is a typical sequence-to-sequence model with attention mechanism [See et al.,
2017], where the encoder is a single-layer bi-LSTM and the decoder is a single-layer unidi-
rectional LSTM.
PGN is a hybrid pointer-generator network that can copy words from the source text via
pointing mechanism [See et al., 2017].
Trans-Copy uses the Transformer network [Vaswani et al., 2017], which incorporates the
self-attention mechanism in both encoder and decoder, and uses the copy mechanism for
the decoder.
PairEncoder [Pan et al., 2018] is a model particularly developed for the same problem as
ours, where a modified encoder based on the Transformer network is developed to emphasize
the interaction between two speakers.
BertSum [Liu and Lapata, 2019] uses the pre-trained BERT [Devlin et al., 2019] as the
encoder, and Transformer as the decoder.

5.2 Experimental Settings

Inference Module: In the inference module, a Random Forest classifier from sklearn 1 is
used to distinguish whether a candidate word is a plausible CODC or not, and we select top
m = 13 candidates ranked by the classifier as the knowledge that is fed into the knowledge

1. https://scikit-learn.org
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General
Quality

OOC-Inference

Trans-Copy 0.484 0.473
Trans-KnowAttn 0.516 0.527

PCODC RCODC F1CODC

all 8.83 46.71 14.85
-glove 9.21 48.48 15.48
-w2v 9.30 48.91 15.63
-cooccurrence 5.84 30.13 9.78
-wordnet 8.62 45.66 14.51

Table 2: (a) Results of human evaluation. OOC-inference indicates out-of-context inference.
(b) Effects of different features. - before the name of the features indicates removing this
feature in the classification.

attention module. Details of the ablation study of this classification task are shown in
Section 5.5.

Knowledge Attention Summarization Model: For all models except for PairEncoder,
the input sequences are concatenated dialogue text with marks of <q> and <a> to identity
different turns with two speakers. For PairEncoder, the input is a list of utterance pairs.
All five references are used in the training process. Each dialogue is used in five training in-
stances accompanied with the corresponding five captions. For models except for BertSum,
we use a vocabulary of 20K words out of in total 28K words. For all RNN-based models,
256-dimensional RNN hidden states and 256-dimensional word embeddings are applied for
both knowledge word embeddings and encoder-decoder embeddings. For Trans-Copy, the
dimension of word embeddings is set to be 256. For the BertSum model, we follow the same
experimental setting as its original paper [Liu and Lapata, 2019].

5.3 Evaluation

Automatic Evaluation: Besides CODC metrics, conventional lexical metrics BLEU [Pap-
ineni et al., 2002], ROUGE-L [Lin, 2004], METEOR [Lavie and Agarwal, 2007], and CIDEr
[Vedantam et al., 2015] are used for evaluation.

Human Evaluation: To better understand the effects of the knowledge attention module,
we conducted human annotation on the overall quality and the out-of-context inference
(missing-link inference) ability for 100 randomly selected summaries, generated by Trans-
Copy and Trans-KnowAttn, respectively. Each pair of summaries were evaluated by 5
annotators. We run the evaluation using workers from Amazon Mechanical Turk (AMT.)
Workers were given full illustrations about the definition of out-of-context inference and were
asked to judge which summarization is better in terms of overall abstraction quality and out-
of-context inference ability. The summaries were randomly shuffled to prevent unexpected
bias. There was also a neutral option for the annotators if they find no difference between
the two given summaries.

5.4 Results and Evaluation

Results of conventional metrics and CODC metrics are shown in Table 1. For the main
metric, CIDEr, there’s a 1.2 points improvement from Trans-Copy to Trans-KnowAttn. In
addition, the improvements on the CODC Recall and F1 are also significant, indicating
that the inferential ability of the model is improved by the inference module. We carry out
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Dialogue

A: The skater is male?
B: Yes.
A: How old does he look?
B: Sixteen.
A: What color is his skateboard?
B: Black.
A: Where is he riding?
B: In a skate park.
A: Is it indoor or outdoor?
B: Out.
A: Is the sun out?
B: No.
A: Do you see any other skaters?
B: No.
A: What expression does the skater have?
B: He 's looking down.
A: What is he wearing?
B: Shorts and a shirt.
A: What color is his shirt?
B: Black.

A young man is on his skateboard on the rampGround Truth

Trans-Copy

Trans-KnowAttn

A young man is doing a trick on his skateboard

A man riding a skateboard down the side of a ramp

Figure 4: (a) Effects on the performance of the Trans-KnowAttn model given different
number of retrieved knowledge words k. Dashed lines indicates the corresponding scores of
Trans-copy baseline. (b) A case of CODC inference. We highlight contextual concepts and
CODC inference with bold italics and bold italics respectively.

a statistical test using Randomization Test [Cohen, 1995]. All the improvements except
for BLEU-4 and PCODC are statistically significant. The human evaluation results are
presented in Table 2 (a), where the scores for each model are proportional to the number of
times a model is considered superior to the other. The scores in each columns are normalized
so that the sum equals 1. We show that Trans-KnowAttn brings consistent improvements
in terms of both inference ability and overall summarization quality.

5.5 Ablations

Inference Module: We check the importance of different features by removing each of
them in the random forest classifier. As shown in Table 2 (b), we report the retrieval results
on the validation set under top 10 retrieval, and the CODC scores are calculated on the
retrieved knowledge. It shows that keeping one of the w2v or glove similarities would boost
the retrieval performance. Also, the co-occurrence feature is the most prominent one among
all. In the end, we select the -w2v setting for the summarization.

Summarization Results: We study the overall F1CODC and CIDEr scores of the gen-
erated summaries, given the number of retrieved knowledge words that are fed into the
knowledge attention model, as shown in Figure 4 (a). When the number of retrieved words
m exceeds 4, the overall CIDEr score can outperform the Trans-Copy baseline. For F1CODC ,
it reaches the maximum when m = 12.

5.6 Case Study

We show an example of the generated results in Figure 4 (b). We observed concepts such
as “skater,” “skateboard,” and “skate park” from the dialogue, from which a human will
easily infer a “ramp” from the context which is a common environment where people play
skateboards. The Trans-Copy model fails to infer such a new but highly relevant concept
while Trans-KnowAttn will successfully yield this inference. More case studies will be
presented in the appendix.
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6. Related works

We introduce the related work in two-fold: neural text summarization and pragmatics tasks
in NLP.

6.1 Neural Text Summarization

Conversation summarization has been studied extensively. It can be extractive approaches
[Zechner, 2001, Nenkova and Bagga, 2003, Maskey and Hirschberg, 2005, Xie et al., 2008,
Riedhammer et al., 2010] and abstractive approaches [Oya et al., 2014, Banerjee et al.,
2015, Shang et al., 2018]. Nowadays, more attention has been paid to neural-network-
based approaches due to the successful application of deep learning in natural language
generation. Most of the neural-network-based approaches [Rush et al., 2015, Chopra et al.,
2016, Nallapati et al., 2016, See et al., 2017, Paulus et al., 2018, Wang et al., 2019] follow
the sequence-to-sequence framework [Sutskever et al., 2014]. Especially, attention mecha-
nisms [Bahdanau et al., 2015] are widely used in the sequence-to-sequence framework to
improve the generation quality [Luong et al., 2015, Rush et al., 2015, Xu et al., 2015]. Self-
supervised pretrained language models, such as BERT [Devlin et al., 2019], are also applied
to natural language generation tasks including summarization. Liu and Lapata [2019] intro-
duced a document-level encoder based on BERT which would better capture the semantics
of a document. More recently, external knowledge in knowledge graphs and local semantic
knowledge graphs are also used to improve the correctness of factual statements and quality
in abstractive summarization [Zhu et al., 2020, Huang et al., 2020]. Also, multi-view seq2seq
models are designed [Chen and Yang, 2020] by combining conversational structures from
different views for better representation of human conversations.

6.2 Pragmatics

Pragmatics [Grice, 1975] has been studied in both linguistics and natural language process-
ing for a long time. It generally studies the ways in which the context contributes to the
meaning. Early approaches only consider cases or rule-based methods to evaluate prag-
matics in language understanding and generation problems such as machine translation or
dialogue systems [Rothkegel, 1986, Carberry, 1989, Iida et al., 1990]. Recent research fo-
cuses on using computational methods and automatic evaluation metrics in language games
to evaluate the ability to infer through context [Frank and Goodman, 2012], which is usually
called Rational Speech Acts (RSA) model. Wang et al. [2016] developed another language
game and found that pragmatics models may not help the people who use less precise
and consistent languages, as the pragmatics model assumes that the human is cooperative
and behaving rationally. Fried et al. [2018] showed that explicit inference can also help
learning-based RSA models.

Besides typical RSA models that committed to Grice’s original target, there are also
several other interesting directions to explore in computational ways. Kazemzadeh et al.
[2014] introduced a way to evaluate pragmatics, where an image is used to identify an object
inside. Then one player is asked to provide referring expression for the object while the other
is asked to localize the object based on the expression. Many models have been developed
for this task [Mao et al., 2016, Andreas and Klein, 2016, Monroe et al., 2017, Vedantam
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et al., 2017]. In addition, Lewis et al. [2017] introduced a negotiation generation task that
implicitly needs pragmatics inference in the learning system. Another data (or task) is
called CommitmentBank, which evaluates the inference of a speaker’s commitment towards
the content of the complement under different entailment-canceling environments [Jiang and
de Marneffe, 2019a,b]. Recently, Shen et al. [2019] improves text generation with techniques
of computational pragmatics, which are comprised of information preservation and explicit
modeling of distractors.

7. Conclusion

In this paper, we address the problem of out-of-context inference in dialogue summarization
for the first time, and proposed Trans-KnowAttn to improve the inference ability of dialogue
summarization. Based on our observation, such kind of inference is required for most of the
dialogues in the DialSum dataset. Experiments demonstrate that the proposed model can
outperform the previous state-of-the-art in terms of both traditional lexical metrics, and
our newly proposed F1CODC significantly. We argue that with the help of out-of-context
inference, neural models can better understand the pragmatics in human dialogues and thus
improve the overall quality of summarization.
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Appendix A. Details of the Summarization Model

We present the details of the Knowledge Attention part of the knowledge-aware summa-
rization model in this section.

Encoder Formulation. The encoder part is the same as what has been commonly used
in previous neural summarization models. The input to the encoder is a sequence of dialogue
word tokens D = [w1, w2, · · · , wn], and the encoder produces a sequence of hidden states
{h1, · · · , ,hn}.

Decoder Formulation and Knowledge Attention. In the decoding process, we in-
clude two attention channels, a standard attention that attends to encoder hidden states
[Luong et al., 2015, Bahdanau et al., 2015] and a knowledge attention that attends to the
retrieved knowledge list. Note that we infer knowledge in the word level and top m candi-
dates scored by the classifier will be retrieved. Thus we denote the list of knowledge word
embeddings as K = {k1,k2, · · · ,km}. For the t-th step of the decoder hiddent state st, we
use st to query the encoder hidden states as well as the list of knowledge vectors. Here we
use βh(hi, st) and βk(ki, st) as scoring functions in the calculation of attention distribution
for encoder hidden states and knowledge attention respectively, where β can be an MLP or
general function as in [Bahdanau et al., 2015]. The two attention based context vectors h∗t
and k∗t are calculated as:

h∗t =
∑
i

atihi and k∗t =
∑
i

vtiki, (5)

where the corresponding distributions are:

ati = softmaxt(exp(βh(hi, st))), (6)

vti = softmaxt(exp(βk(ki, st))). (7)

The knowledge context vector can be regarded as a fixed-size representation of the knowl-
edge that has been inferred from the input dialogue. The context vectors h∗t and k∗t are
concatenated with the decoder state st to produce the probability distribution over the
vocabulary:

PV = softmax(V ′(V [st,h
∗
t ,k
∗
t ] + b) + b′), (8)

where V , V ′, b, and b′ are learnable parameters. We follow See et al. [2017] to use two
linear layers in this formulation.

The generation probability of copying from the input text pg ∈ [0, 1] is calculated as See
et al. [2017]. To better facilitate the effects of the knowledge, we also apply a generation
probability of knowledge pk ∈ [0, 1] as an indicator of copying concepts from the knowledge
list. pg and pk for step t is calculated from the encoder context vector h∗t , the knowledge
context vector k∗t , the decoder state st, and the decoder input xt:

pg = σ(W T
h∗h∗t + W T

s st + W T
x xt + bg), (9)

pk = σ(W T
kh∗h∗t + W T

ksst

+ W T
kxxt + W T

k k∗t + bk),
(10)
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where matices Wh∗ , Ws, Wx, and bg are learnable parameters for pg, and Wkh∗ , Wks,
Wkx, Wk, and bk are learnable parameters for pk. Here σ is the sigmoid function.

Finally, both pg and pk are used to determine the probability of the next word to be gen-
erated. They serve as soft choices among sampling from PV , copying a word from the input
dialogue, or copying a word from the knowledge list, by sampling from the corresponding
attention distribution:

P (w) =
1

2
((1− pg)PV (w) + pg

∑
i:wi=w

ati)

+
1

2
((1− pk)PV (w) + pk

∑
i:wi=w

vti).

(11)

The loss function for time step t is the negative log likelihood of the target word w∗t :

losst = − logP (w∗t ), (12)

and the total loss for the input sequence is:

loss =
1

T

T∑
t=1

losst, (13)

where T is the total number of generated words.

Appendix B. Case Studies

More case studies are presented in Figure 5.
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Dialogue

A: What color is the closest plane?
B: Blue.
A: What color is the other plane?
B: Yellow.
A: Are they flying side by side?
B: Yes.
A: Do you see any people?
B: No.
A: Do you see propeller on the closet plane?
B: No.
A: Do you see both wings on furthest plane?
B: Yes.
A: Do you see both wings on blue plane?
B: Yes.
A: Can you see the ground?
B: No.
A: Are there any other planes?
B: No.
A: Do you see any clouds?

Two small planes flying with each other in the skyGround Truth

Trans-Copy

Trans-KnowAttn

Two blue and yellow airplanes flying in formation

Two airplanes are flying in the sky

(a) Context suggests “sky.”

Dialogue

A: The skater is male?
B: Yes.
A: How old does he look?
B: Sixteen.
A: What color is his skateboard?
B: Black.
A: Where is he riding?
B: In a skate park.
A: Is it indoor or outdoor?
B: Out.
A: Is the sun out?
B: No.
A: Do you see any other skaters?
B: No.
A: What expression does the skater have?
B: He 's looking down.
A: What is he wearing?
B: Shorts and a shirt.
A: What color is his shirt?
B: Black.

A young man is on his skateboard on the rampGround Truth

Trans-Copy

Trans-KnowAttn

A young man is doing a trick on his skateboard

A man riding a skateboard down the side of a ramp

(b) Context suggests “ramp.”

Dialogue

A: How many kids do you see?
B: Twelve.
A: Are all the kids facing camera?
B: Yes.
A: Are all the kids wearing tennis suit?
B: Yes.
A: Is any 1 wearing hat?
B: Most of them are.
A: Is any kid smiling?
B: Yes , some are.
A: Do you see the grass?
B: There is 0.
A: Do you see a net?
B: Yes.
A: Do you see spectators?
B: 0.
A: Do you see the sky?
B: Yes.
A: Is it sunny?
B: Yes.

A group of kids posing for a picture on a tennis court
 

Ground Truth

Trans-Copy

Trans-KnowAttn

A group of young children holding tennis racquets

A group of young men standing next to each other on 
a tennis court

 

(c) Context suggests “court.”

Dialogue

A: Is it a zoo?
B: I think so , it 's in an enclosed area.
A: Is it a long fence?
B: Yes.
A: Are there people?
B: No.
A: Do you see lots of grass?
B: Yes.
A: Are there mountains?
B: No.
A: Is it just 1 giraffe?
B: Yes.
A: Is he eating?
B: No.
A: Is it a baby giraffe?
B: No.
A: Is the inside?
B: No it 's outside.
A: Is it sunny?
B: Yes.

A giraffe is standing next to a treeGround Truth

Trans-Copy

Trans-KnowAttn

A giraffe standing next to a wooden fence

A giraffe standing next to a tree in a field

(d) Context suggests “tree.”

Dialogue

A: Is it busy?
B: No.
A: Is there a lot of people?
B: I don't see any.
A: Is there clouds?
B: Very thin cloud layer.
A: Can you see the sky?
B: A little.
A: How many planes?
B: I see 1.
A: Is it known?
B: No.
A: Is there people near the lane like 
workers?
B: Nop.
A: Is it sunny?
B: Yes.
A: Is there truck?
B: No.
A: Is there a ole?
B: No.

Looking through windows into the run way of an airportGround Truth

Trans-Copy

Trans-KnowAttn

A large airplane flying through a blue sky

A large jetliner sitting on top of an airport tarmac

(e) Context suggests “airport.”

Dialogue

A: Do you see boat?
B: Yes.
A: Is it sunny day?
B: No.
A: Is it cloudy?
B: Yes.
A: Do you see people?
B: No.
A: Do you see light in boat?
B: I see light on boat mast , not inside.
A: What color is boat?
B: White.
A: Is that only color?
B: Blue pinstriping.
A: Is boat in lake?
B: No.
A: Is boat in water?
B: Yes.
A: Is boat in ocean?
B: Yes.

A boat is coming down the water near the shoreGround Truth

Trans-Copy

Trans-KnowAttn

A boat floating on top of a body of water

A boat in the water near the shore

(f) Context suggests “shore.”

Figure 5: More cases of out-of-context inference. We highlight contextual concepts and
conceptual inference with bold italics and bold italics respectively. Each figure is a
comparison between Trans-Copy and +KnowAtten. For example, in (a), we will infer the
picture of two airplanes flying in the sky by “plane” and “No ground is seen.” Trans-
KnowAttn successfully inferred the concept “sky” while Trans-Copy didn’t. In (c), from
the “tennis suit,” “net,” and that the kids are facing the camera, we can infer that they are
on a tennis court instead of other places. Also, Trans-KnowAttn successfully inferred the
place where the kids are while Trans-Copy didn’t.
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