

TransINT: Embedding Implication Rules in Knowledge Graphs with Isomorphic Intersections of Linear Subspaces

So Yeon Min*+, Preethi Raghavan*-, Peter Szolovits*+

*: MIT-IBM Watson AI Lab

*: MIT CSAIL

-: IBM Research

Knowledge Graph Embeddings

Ex) Implication Rule: Is_Father_Of -> Is_Parent_Of

Can we impose Implication Rule in KG Embedding?

📤 A Knowledge Graph

Problem Statement

- Relation as sets of ordered pairs of entities
- Given rules or hierarchy

Knowledge Graph

Embeddings in R^d

```
Goal: (R_i \subset R_j) iff (r_i's \text{ relation space} \subset r_j's \text{ relation space}) or equivalently, (r_i \Rightarrow r_j) iff (r_i's \text{ relation space} \subset r_j's \text{ relation space})
```

IransH

Given (h, r, t) -> \overrightarrow{h} , \overrightarrow{t} \overrightarrow{r} , H_r

A Different Perspective on TransH

Viewing TransH as: (a):
$$\overrightarrow{t_{\perp}} - \overrightarrow{h_{\perp}} \approx \overrightarrow{r}$$

(projection first, then difference)

(b):
$$(t-h)$$
 $\approx \overrightarrow{r}$

(difference first, then projection)

Red Line: The space where t = h of all (h,t)'s tied by is_parent_of can exist.

= Relation Space of is_parent_of

Methods

Methods

- 1. Intersection Constraint: $H_i \subset H_j$
- **2. Projection Constraint:** Projection of $\overrightarrow{r_j}$ onto H_i is $\overrightarrow{r_i}$

$$P_i\overrightarrow{r_j} = \overrightarrow{r_i}$$
 equivalently where P_i is projection matrix onto H_i .

rel.space(is_father_of), rel.space(is_mother_of) c rel.space(is_parent_of)

Green hyperplane = relation space of *is_parent_of*Blue, red lines: relation space of *is_father_of*, *is_mother_of*

Results - Link Prediction

Link Prediction: predict? in (h, r,?)

ex) (Harry, is_father_of, ?)

Table 1: Results for Link Prediction on FB122. *: For KALE, we report the best performance by any of KALE-PRE, KALE-Joint, KALE-TRIP (3 variants of KALE proposed by Guo et al. [2016]).

	Raw					Filtered				
	MRR	MED	Hits N%			MRR	MED	Hits N%		
	MITTE	WILD	3	5	10	WITCH	WILL	3	5	10
TransE	0.262	10.0	33.6	42.5	50.0	0.480	2.0	58.9	64.2	70.2
TransH	0.249	12.0	31.9	40.7	48.6	0.460	3.0	53.7	59.1	66.0
TransR	0.261	15.0	28.9	37.4	45.9	0.523	2.0	59.9	65.2	71.8
KALE*	0.294	9.0	36.9	44.8	51.9	0.523	2.0	61.7	66.4	72.8
$TransINT^G$	0.339	6.0	40.1	49.1	54.6	0.655	1.0	70.4	75.1	78.7
$TransINT^{NG}$	0.323	8.0	38.3	46.6	53.8	0.620	1.0	70.1	74.1	78.3

Table 2: Results for Link Prediction on NELL sport/ location.

	Sport					Location				
	MRR		Hits N%		MRR		Hits N%			
	Filtered	Raw	1	3	10	Filtered	Raw	1	3	10
Logical Inference	-	-	28.8	-	-	-	-	27.0	-	-
SimplE	0.230	0.174	18.4	23.4	32.4	0.190	0.189	13.0	21.0	31.5
SimplE+	0.404	0.337	33.9	44.0	50.8	0.440	0.434	43.0	44.0	45.0
$TransINT^G$	0.450	0.361	37.6	50.2	56.2	0.550	0.535	51.2	56.8	61.1
$TransINT^{NG}$	0.431	0.362	36.7	48.7	52.1	0.536	0.534	51.1	53.3	59.0

Results - Triple Classification

Triple Classification: predict (h, r, t) valid/ invalid

Table 3: Results for Triple Classification on FB122, in Mean Average Precision (MAP).

TransE	TransH	TransR	KALE*	$TransINT^G$		Trans	TransINT NG			
0.634	0.641	0.619	0.677	0.781 (0.83	39/0.752	0.743	(0.709)	0.761)		

Margin-aware geometry

Margin-aware Geometry (Fig. (d)): If weaker objective required (i.e. $(t-h)_{\perp} - \overrightarrow{r} < \epsilon$), relation spaces (now with thickness 2 ϵ) still included in the same direction.

rel.space(is_father_of), rel.space(is_mother_of) c rel.space(is_parent_of)

Green hyperrectangle = rel. space of *is_parent_of*Blue, red cylinders: rel. space of *is_father_of*, *is_mother_of*

Semantic Relatedness/ Rule Mining

Relation Spaces overlapping with different angles

Angle:

Metric of similarity between embedded objects Ex) Word2vec, Visual Semantics

Between two relation spaces, the closer the angle

the more overlap in area

Table 4: Examples of relations' angles and imb with respect to /people/person/place_of_birth

		Relation	Anlge	imb
Not Disjoint	Relatedness	/people/person/nationality	22.7	1.18
	Implication	/people/person/place_lived/location*	46.7	3.77
Disjoint		/people/cause_of_death/people	76.6	n/a
		/sports/sports_team/colors	83.5	n/a