

### Enriching KBs with interesting negative statements

Hiba Arnaout, Simon Razniewski, and Gerhard Weikum

### **Awards of Stephen Hawking**

#### Wikidata

Albert Einstein Medal Wolf Prize in Physics Copley Medal Presidential Medal of Freedom Naylor Prize and Lectureship Eddington Medal Michelson-Morley Award Fellow of the Royal Society Order of the British Empire

#### 42 awards in total.

.....



### **Awards of Stephen Hawking**

#### Wikidata

Albert Einstein Medal

Wolf Prize in Physics

Copley Medal

Presidential Medal of Freedom

Naylor Prize and Lectureship

Eddington Medal

Michelson-Morley Award

Fellow of the Royal Society

Order of the British Empire

.....

#### 42 awards in total.

One <u>salient</u> award that he has NOT won ... The Nobel Prize in Physics!



Problem: Existing positive-only KBs are unaware of salient negation.



Problem: Existing positive-only KBs are unaware of salient negation.

Our proposal.

'Explicitly adding salient *negative* statements to KBs.'



Problem: Existing positive-only KBs are unaware of salient negation.

Our proposal.

'Explicitly adding salient *negative* statements to KBs.'

¬(Hawking; award; Nobel Prize in Physics)

¬(Turkey; capital; Istanbul)

¬(Iceland; member of; EU)



Problem: Existing positive-only KBs are unaware of salient negation.

Our proposal.

'Explicitly adding salient *negative* statements to KBs.'

¬(Hawking; award; Nobel Prize in Physics)

¬(Turkey; capital; Istanbul)

¬(Iceland; member of; EU)

But how are we going to identify these salient negations?



Problem: Existing positive-only KBs are unaware of salient negation.

Our proposal.

'Explicitly adding salient negative statements to KBs.'

- (Hawking; award; Nobel Prize in Physics)

¬(Turkey; capital; Istanbul)

¬(Iceland; member of; EU)

But how are we going to identify these salient negations?

KBs necessarily operate under OWA.. ...so what is <u>not</u> in there is <u>not necessarily false.</u>

max planck institut informatik

Problem: Existing positive-only KBs are unaware of salient negation.

Our proposal.

'Explicitly adding salient *negative* statements to KBs.'

- (Hawking; award; Nobel Prize in Physics)

¬(Turkey; capital; Istanbul)

¬(Iceland; member of; EU)

But how are we going to identify these salient negations?

KBs necessarily operate under OWA.. ...so what is <u>not</u> in there is <u>not necessarily false.</u>

Our proposal: peer-based statistical inference + local CWA + learning to rank.

### **Peer-based statistical inference**

Given a knowledge base KB, and an entity e:

- Gist: we select highly related entities (peers) to e, that set <u>expectations</u> about e, where the negation of these expectations are potentially salient.
- Implicit assumption: within a group of *peers*, we are assuming local CWA.

If KB does NOT list.. Nobel in Physics as an award won by Hawking BUT.. <u>list it for his peers</u>.. it is assumed to be <u>false</u> for Hawking *(and not merely a missing statement)* 



### **Peer-based statistical inference -steps**

Input: KB, and e

KB = Wikidata, e= Stephen Hawking

#### Selecting highly related entities: entity embeddings, structured facets, graph-base measures...

Measure for people -> Occupations(Hawking) = physicist.

### Collecting peers of e

| statement                      | Einstein | Feynman | Hawking | Relative<br>Freq. |
|--------------------------------|----------|---------|---------|-------------------|
| citizen; U.S.A                 | 1        | 1       | 0       | 1                 |
| employer; University of Zurich | 1        | 0       | 0       | 0.5               |
| award; Nobel in Physics        | 1        | 1       | 0       | 1                 |
| native language; English       | θ        | 4       | 1       | -                 |

#### Inferring negative candidates

#### Top-k interesting negations about e

- 1. ¬ (award; Nobel in Physics)
- 2. ¬ (citizen; U.S.A.)
- 3. ¬ (employer; University of Zurich)





Learning to rank



1. Intrinsic: Ability to rank negations by interestingness;

Stephen Hawking: ¬ (award; Nobel in Physics), ¬ (citizen; U.S.), ¬ (citizen; Egypt) ¬ (actedIn; Titanic).

- 2. Extrinsic 1: General entity summarization of only positive statements vs a mix of positive and negative statements.
- 3. Extrinsic 2: Decision making on hotel booking using pos features vs a mix.
- 4. Extrinsic 3: Question answering.



## **Entity summarization**

#### Setup. Mixed Wikidata entities.

#### Task.

### Which set contain more interesting information about <u>Hawking</u>?

| A                                      |  |  |
|----------------------------------------|--|--|
| (native language; English)             |  |  |
| (child; Lucy Hawking)                  |  |  |
| (award; Wolf Prize in Physics)         |  |  |
| (occupation; astronomer)               |  |  |
| (employer; Gonville and Caius College) |  |  |

B ¬ (award; Nobel Prize in Physics) (child; Lucy Hawking) (award; Wolf Prize in Physics) (occupation; astronomer) ¬ (citizen; U.S.A.)

Results. <mark>72% (</mark>mix pos & neg); <mark>16% (</mark>pos only); <mark>12% (</mark>either or neither).



## Hotel booking

#### Setup.

Booking.com hotel listings.

### Task.

# Which set of features is more helpful for you to make a decision about staying in this hotel?

| A                     | В                                  |
|-----------------------|------------------------------------|
| (free-Wifi)           | (free-Wifi)                        |
| (fitness center)      | ¬ (facilities for disabled people) |
| (business facilities) | (business facilities)              |
| (concierge)           | ¬ (pets)                           |
| (minibar)             | (minibar)                          |

#### Results. <mark>63% (</mark>mix pos % neg); <mark>21% (</mark>pos only); <mark>16% (</mark>either or neither).



### Conclusion

- Negations are <u>useful</u> for entity summarization, decision making, and question answering.
- We propose a method for automatically discovering <u>salient</u> negations about entities in KBs: peer-based statistical inference.
- More in the paper..
  - More experiments on interestingness and correctness of our inferred negative statements.
  - A second methodology on automatically extracting salient negations from text – Query-logs.
  - First datasets on interesting negations from Wikidata publicly available. [tinyurl.com/yb5dtfqt]



## Thank you!

harnaout@mpi-inf.mpg.de

