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Contribution

e Many accurate TF models for KBC, e.g. DistMult”, ComplEx*
e Models are opaque
o Reduces user trust in prediction

e OXKBC: Generate explanations for model predictions
o Trains a post-facto explanator
o Faithful to the model

o Satisfies end user in a user study on MTurk

*Yang B et al. “Embedding entities and relations for learning and inference in knowledge bases”, ICLR 2015
#Trouillon Théo et al. "Complex embeddings for simple link prediction." ICML, 2016.
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What is a TF Model?

e Knowledge Graph:
o Nodes: Entities e.g. Tory, BasketBall
o Directed Edges:  Relations b/w edges e.g. (GOOURE

e TF Model: Learn embeddings for each entity and
relation
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Taxonomy of Explanation Engines

OPENING THE
BLACK BOX
Source credits: On explainable PROBLEM
Al: From theory to motivation,
applications and limitations,
Tutorial at AAAI 2019 i
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https://github.com/xaitutorial2019/xaitutorial2019.github.io/raw/master/slides/aaai_2019_xai_tutorial.pdf
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OxKBC: Different Templates of Explanations

e Entity Similarity (T1)
e Relation Similarity (T2)
e Two Length Paths (T3)
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OxKBC: Selection Module

e How to pick the best explanation?
e NO annotation over explanations.
e Selection Module:
o Novel features for each template
o Novel unsupervised loss function
o Handful of annotation reduces variance



Turk Experiments

o How good are OxKBC(C's explanations?
o Do end users prefer OxKBC vs Rule Mining™?

*Yang B et al. “Embedding entities and relations for learning and inference in knowledge bases”, ICLR 2015



Turk Experiments

Question: Turun Palloseura football team has a play position __ ?

Answer: Midfielder

Explanation A: Turun Palloseura football team has a play position Defender and Defender is a
position in the football team Lierse S.K. and Lierse $.K. has a position of Midfielder

Explanation B: In our Knowledge Base, many foothall teams (598 of 745) have players at Midfielder

© Ais better than B

) B is better than A

© Both Aand B are equally good
) Both Aand B are bad



Turk Experiments

OxKBC Rules Tie Total
Better Better
145 49 18 212
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Faithfulness of Explanations

e What if explaining facts are removed from KB?
e How will it impact model’s prediction?

e Measure through reduction in MRR:
o More decrease => More faithful

MRR

Steps
1

|
2
5

T1
1.00
0.50
0.30
0.20

T2
1.00
0.60
0.34
0.18

T3
1.00
0.40
0.24
0.13




Conclusion

e OxKBC provides post-hoc explanations

o for any factorization based KBC models.
e Faithful to the underlying model
e Satisfies end user in a user study on MTurk
e |ncreases trustin the underlying model

All code and data at: hiips://eithub.com/dair-1td/OxKEC
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