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Temporal Knowledge Graph (tKG)

Each Quadruple represents an events: 

(subject, predicate, object, timestamp)

(Obama, visit, Turkey, 2009-04-05)

Global Database of Events, Language, and Tone
(GDELT)
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Graph View of a Temporal Knowledge Graph

Each Quadruple represents an events: 

(subject, predicate, object, timestamp)

(Obama, visit, Turkey, 2009-04-05)
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From Temporal Knowledge Graph to Event Sequence

tt1

(e1, p1，e2), (e1, p2, e5), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Timeline of a Sequence of Events.
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From Temporal Knowledge Graph to Event Sequence

tt2t1

(e1, p1，e2), (e1, p2, e5), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Timeline of a Sequence of Events.

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e1), (e3, p1, e2) 
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From Temporal Knowledge Graph to Event Sequence

tt3t2t1

(e1, p1，e2), (e1, p2, e5), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Timeline of a Sequence of Events.

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e1), (e3, p1, e2) 

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e2), (e3, p2, e2) 
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From Temporal Knowledge Graph to Event Sequence

t4t3t2t1

(e1, p1，e2), (e1, p2, e5), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Timeline of a Sequence of Events.

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e1), (e3, p1, e2) 

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e2), (e3, p2, e2) 
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Slices of a Temporal Knowledge Graph.
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Hawkes Process & Neural Hawkes Process

Hawkes Process[2] 𝜆𝑘 𝑡 = 𝜇! + ∑":$!%$ 𝛼!!,!exp −𝛿!!,! 𝑡 − 𝑡" .

Intensity function of event type 𝑘 Base intensity Mutual excitation Exponential decaying with time
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Hawkes Process & Neural Hawkes Process

Hawkes Process[2] 𝜆𝑘 𝑡 = 𝜇! + ∑":$!%$ 𝛼!!,!exp −𝛿!!,! 𝑡 − 𝑡" .

Neural Hawkes Process[3] 𝜆! 𝑡 = 𝑓(𝒘!
'𝒉(𝑡)).

Intensity function of event type 𝑘 Base intensity Mutual excitation Exponential decaying with time

Intensity function of event type 𝑘 Activation function Event-specific weight vector Hidden state vector

An Event Stream from the Neural Hawkes Process.

EventType-1 EventType-2 EventType-1 EventType-2

BaseIntensity-1

BaseIntensity-2

Intensity-1
Intensity-2

t1 t2 t3 t4

t

Excitation

Inhibition
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Challenge: Characteristics of Temporal Knowledge Graphs

• Scalability: a huge amount of event types in tKGs.

o Number of probable event types in our tKG dataset: 1.4 ⋅ 1010

o Existing event types in our dataset: 1.2 ⋅ 106

tt3t2t1

(e1, p1，e2), (e1, p2, e5), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Event Sequence Extracted from a Temporal Knowledge Graph 

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e1), (e3, p2, e2) 

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e2), (e3, p2, e2) 

(subject, predicate, object)
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How to improve the scalability of Hawkes process?

• Considering an object prediction query (e1, p1, ?, t4).
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How to improve the scalability of Hawkes process?

• Considering an object prediction query (e1, p1, ?, t4).

• Modelling intensity functions inspired by score functions of KGs
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How to improve the scalability of Hawkes process?

• Considering an object prediction query (e1, p1, ?, t4).

• Modelling intensity functions inspired by score functions of KGs

• Investigating the influence of the following historical event sequence:
eh,sp(e1, p1, t4) = {(e1, p1，e3, t1), (e1, p1，e4, t1), (e1, p1，e2, t2), (e1, p1，e4, t2), (e1, p1, e3, t3)}.

tt3t2t1

(e1, p1，e3), (e1, p1, e4), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Event Sequence Extracted from a Temporal Knowledge Graph 

(e1, p1，e2), (e1, p1, e4), (e1, p2, e5), (e6, p3, e1), (e3, p1, e2) 

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e2), (e3, p2, e2) 
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Neighborhood Aggregation

• Considering an object prediction query (e1, p1, ?, t4).

• Neighborhood Aggregation Module[1] :

g O"! e#, 𝑝$ =
1

O"! e#, p$
(𝐞% + 𝐞&)

tt3t2t1

(e1, p1，e3), (e1, p1, e4), (e6, p3, e1), (e3, p2, e2), (e3, p3, e4) 

Event Sequence Extracted from a Temporal Knowledge Graph 

(e1, p1，e2), (e1, p1, e4), (e1, p2, e5), (e6, p3, e1), (e3, p1, e2) 

(e1, p1，e3), (e1, p2, e4), (e1, p2, e5), (e6, p3, e2), (e3, p2, e2) 

Ot1(e1, p2)

Neighborhood Aggregation

t1

p 1 p
1

e1

e3 e4

g(Ot1(e1, p2))

={e3, e4} Embedding of the 3-th entity Embedding of the 4-th entity
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Graph Hawkes Process

• Object prediction query e'" , e(" , ? , t) .

• Hidden state computed by a continuous-time LSTM (cLSTM) network[3]

𝐡'*+ e'" , e(" , t), e)
,,'( = cLSTM 𝐞'" , 𝐞(" , ∪./#

) g O"#(e'" , e(")

Historical event sequence Subject embedding Predicate embedding Neighborhood aggregation module 
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Graph Hawkes Process

• Object prediction query e'" , e(" , ? , t) .

• Hidden state computed by a continuous-time LSTM (cLSTM) network[3]

𝐡'*+ e'" , e(" , t), e)
,,'( = cLSTM 𝐞'" , 𝐞(" , ∪./#

) g O"#(e'" , e(")

• Subject-centric intensity function

λ'*+ e0|e'" , e(" , t), e)
,,'( = f 𝐖1 𝐞'" ⊕ 𝐖,𝐡'*+ e'" , e(" , t), e)

,,'( ⊕𝐞(" > 𝐞0

Historical event sequence Subject embedding Predicate embedding Neighborhood aggregation module 

Historical event sequence Subject embedding Predicate embedding Object embeddingHidden state vector

Inner product
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Link Prediction Task
• Consider an object prediction query e'" , e(" , ? , t) and the corresponding 𝑒2

3,45.

• Choose the object candidate with the highest intensity.

e!! e"! ti

e1

e2

e3

e4

eN

Query
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λ#$%(e!! , e"! , e&, t', e'
(,!")

λ#$%(e!! , e"! , e*, t', e'
(,!")

λ#$%(e!! , e"! , e+, t', e'
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(,!")
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Time Prediction Task
• Given a time prediction query e'" , e(" , e0" , t = ? for t > tL.

Last occurrence time of the given event type
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Time Prediction Task
• Given a time prediction query e'" , e(" , e0" , t = ? for t > tL.

• Computing conditional probability density that the given event type (esi, epi, eoi) occurs at time t based on the
survival analysis theory:

p t e'" , e(" , e0" , e)
,,'(, e)

,,0() = λ" e'" , e(" , e0" , t, e)
,,'(, e)

,,0( exp −∫"$
" λ6 e'" , e(" , e7% , τ, e)

,,'( , e)
,,0( dτ

Intensity function Last occurrence time of the given event typeHistorical event sequences

Last occurrence time of the given event type
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Time Prediction Task
• Given a time prediction query e'" , e(" , e0" , t = ? for t > tL.

• Computing conditional probability density that the given event type (esi, epi, eoi) occurs at time t based on the
survival analysis theory:

p t e'" , e(" , e0" , e)
,,'(, e)

,,0() = λ" e'" , e(" , e0" , t, e)
,,'(, e)

,,0( exp −∫"$
" λ6 e'" , e(" , e7% , τ, e)

,,'( , e)
,,0( dτ

• The expectation of the next happening time:
E𝑡2 = ∫6&

⋈ τ > p τ e'" , e(" , e0" , e)
,,'(, e)

,,0() 𝑑𝜏

Intensity function Last occurrence time of the given event typeHistorical event sequences

Last occurrence time of the given event type Probability density function Historical event sequences

Last occurrence time of the given event type
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Experimental Results - Link Prediction

Table 1: Link prediction results: Mean Reciprocal Rank (MRR, %) and Hits@1/3/10 (%). 

Datasets GDELT – filtered ICEWS14 – filtered
Models MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

T-TransE 5.45 0.44 4.89 15.10 7.15 1.39 6.91 18.93

TA-TransE 9.57 0.00 12.51 27.91 11.35 0.00 15.23 34.25

TA-Dismult 10.28 4.87 10.29 20.43 10.73 4.86 10.86 22.52

LiTSEE 6.64 0.00 8.10 18.72 6.45 0.00 7.00 19.40

GHN 23.55 15.66 25.51 38.92 28.71 19.82 31.59 46.47
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How to Fairly Compare the Time Prediction Performance?

Our model (GHN) is nontrivial for time prediction.
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Experimental Results - Time Prediction
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Applications

Integrated conflict early warning Supporting clinical decisions 
in terms of personalized healthcare
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Conclusion

• Solving the challenge of massive event types.

• Proposing the Graph Hawkes Process for forecasting on temporal knowledge graphs.

• Define new evaluation metrics on temporal knowledge graph reasoning tasks.
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Conclusion

• Solving the challenge of massive event types.

• Proposing the Graph Hawkes Process for forecasting on temporal knowledge graphs.

• Define new evaluation metrics on temporal knowledge graph reasoning tasks.

Future Work

• Enabling induction on new nodes. 

• Explainability.
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Thank you!

Link to our paper: https://openreview.net/forum?id=kXVazet_cB

https://openreview.net/forum%3Fid=kXVazet_cB
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