IterefinE: Iterative KG Refinement Embeddings using Symbolic Knowledge

Siddhant Arora, Srikanta Bedathur, Maya Ramanath and Deepak Sharma Indian Institute of Technology Delhi

Motivation

- KGs are often noisy and incomplete which decreases performance in downstream task
- Noise refers to various kind of errors in KG like different names for same entity, incorrect relationships and incompatible entity types
- Cleaning up of noise in KGs (KG Refinement) is usually performed using inference rules and reasoning over KGs
- New facts are inferred using KG embeddings
- GOAL : Combine ontology/inference rules with embeddings methods to improve KG refinement

Contributions

- Propose IterefinE, an iterative method to combine rule-based methods with embeddings-based methods
- Extensive experiments showing improvements upto 9% over baselines

[1] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph identification. In International Semantic Web Conference, pages 542–557. Springer, 2013.

$$L(G) = \sum_{(s,r,o,y)\in G} y \log f(s,r,o) + (1-y) \log (1 - f(s,r,o))$$

- ComplEx^[2] $f(s,r,o) = e_s r_r \overline{e_o}$
- ConvE^[3] $f(s,r,o) = f(vec(f([\overline{e_s};\overline{r_r}]*w))W)e_o$
- Implicit Type Supervision^[4] $f(s, r, o) = \sigma(\mathbf{s_t} \cdot \mathbf{r_h}) * \mathbf{Y}(s, r, o) * \sigma(\mathbf{o_t} \cdot \mathbf{r_t})$
 - \circ s_t and o_t are implicit type embeddings of s and o,
 - \circ r_h and r_f are implicit embeddings of relation dom and range
 - Y is scoring function

[2] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard.Complex embeddings for simple link prediction. In ICML, 2016
[3] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2d knowledge graph embeddings. In AAAI, 2018
[4] P. Jain, P. Kumar, S. Chakrabarti, et al. Type-sensitive knowledge base inference without explicit type supervision. In ACL, 2018

Explicit Type Supervision (TypeE-X)

$f(s, r, o) = \sigma((\mathbf{s_t} \| \mathbf{s_l}) \cdot (\mathbf{r_h} \| \mathbf{r_{dom}})) * \mathbf{Y}(s, r, o) * \sigma((\mathbf{o_t} \| \mathbf{o_l}) \cdot (\mathbf{r_t} \| \mathbf{r_{range}}))$

- Here s_1 and o_1 are explicit entity type embeddings,
- r_{dom} and r_{range} are explicit embedding of domain and range of relation.
- The entity types, domain and range type of relation are transferred from PSL-KGI

Algorithm Workflow

Dataset Preparation

Dataset	E	R	#triples in train / valid / test
NELL	820K	222	1.02M / 4K / 4K
FB15K-237	14K	238	246K / 27K / 30K
YAGO3-10	123K	38	1.13M / 10K / 10K
WN18RR	40K	12	116K / 6K / 6K

Table 3: Number of entities, relation types and triples in each dataset.

NELL already has noisy labels whereas for other datasets-

- Randomly sample 25% and corrupt them.
- Make 50% of the noise is type compatible and the rest is type non compatible

Ontology Information

Dataset	DOM	RNG	SUB	RSUB	MUT	RMUT	INV	SAMEENT	
NELL	418	418	288	461	17K	48K	418	8K	
FB15K-237	237	237	44K	0	147K	53K	44	20K	
YAGO3-10	37	37	828	2	30	870	8	20K	
WN18RR	11	11	13	0	0	66	0	20K	

Table 4: Number of instances of each ontological component in datasets considered.

- NELL and YAGO come with rich ontology
- Type Labels are obtained for FB15k-237^[5] and for WN18RR^[6]. All other rules are automatically mined for both datasets

[5] Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Representation learning of knowledge graphs with hierarchical types. In IJCAI, pages 2965–2971, 2016. - Check citation
 [6] Johannes Villmow. Transforming wn18 / wn18rr back to text., 2018.

Results

PSL KGI is hard to beat on NELL

Slightly worse on WN18RR because of very limited ontology

Method	NELL			YAGO3-10			FB15K-237			WN18RR		
	+ve F1	ve F1	wF1	+ ve F1	-ve F1	wF1	+ve F1	-ve F1	wF1	+ve F1	-ve F1	wF1
ComplEx	0.82	0.58	0.73	0.94	0.43	0.88	0.96	0.4	0.92	0.93	0.26	0.86
ConvE	0.74	0.55	Q.67	0.94	0.37	0.87	0.95	0.37	0.90	0.93	0.07	0.84
PSL-KGI	0.85	0.68	0.79	0.91	0.39	0.85	0.92	0.39	0.88	0.91	0.37	0.85
ConvE +ComplEx	0.82	0.58	0.73	0.95	0.43	0.89	0.96	0.39	0.92	0.93	0.15	0.85
α - ComplEx	0.85	0.68	0.79	0.94	0.50	0.89	0.96	0.58	0.93	0.94	0.24	0.87
α - ConvE	0.85	0.68	0.79	0.94	0.41	0.88	0.95	0.47	0.92	0.92	0.34	0.85
TypeE-ComplEx	0.86	0.68	0.79	0.95	0.56	0.91	0.98	0.82	0.97	0.93	0.24	0.85
TypeE-ConvE	0.86	0.67	0.79	0.95	0.47	0.89	0.98	0.77	0.96	0.94	0.31	0.87

[1] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph identification. In International Semantic Web Conference, pages 542–557. Springer, 2013.

[2] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard. Complex embeddings for simple link prediction. In ICML, 2016
 [3] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2d knowledge graph embeddings. In AAAI, 2018

Additional Results

- Accuracy of TypeE-X methods do not vary very much with additional iterations for rich and good quality ontology
- Adding type inferences from PSL-KGI boost performance over implicit type embeddings
- Subclass, Domain and Range constraints are the most important however none of the individual ontological components alone show performance comparable to using all the component
- Datasets with high quality ontology more stable in KG sizes with increasing iterations
- Type compatible noise are harder to remove than type non compatible noise

Thank You

Contact: siddhantarora1806@gmail.com