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Abstract
Procedural texts describe processes (e.g., photosynthesis, cooking) through the state changes under-
gone by the entities (e.g., plant, food) involved in them. In this paper, we introduce an algorithm for
procedural reading comprehension by translating the text into a general formalism that represents
processes as a sequence of transitions over entity attributes (e.g., location, temperature). Leveraging
pre-trained language models, our model obtains entity-aware and attribute-aware representations of
the text by jointly predicting entity attributes and their transitions. Our model dynamically obtains
contextual encodings of the procedural text, exploiting information that is encoded about previous
and current states to predict the transition of a certain attribute, either as a span from the text or
from a pre-defined set of classes. Empirical results demonstrate that our model achieves state of
the art results on two procedural reading comprehension datasets: PROPARA and NPN-COOKING.

1. Introduction

Procedural text describes how entities (e.g., fuel, engine) and their attributes (e.g., locations)
change throughout a process (e.g., a scientific process or cooking recipe). Procedural reading
comprehension is the task of answering questions about the underlying process described in the text
(Figure 1). This task, in turn, requires inferring attributed of the entities in the process, and their
transitions, which might only be implicitly mentioned. For instance, in Figure 1, the creation of
the mechanical energy in the alternator can be inferred from the second and third sentences.

Full understanding of a procedural text requires capturing the interplay between all the com-
ponents of the process: the affected entities, their attributes and their transitions. Recent works
in understanding procedural text develop domain-specific models for tracking entities in scientific
processes [Mishra et al., 2018] or cooking recipes [Bosselut et al., 2018]. More recently, Gupta
and Durrett [2019b] leverage pre-trained language models to obtain general entity-aware represen-
tations of procedural text, and predict entity transitions from a set of pre-defined classes indepen-
dent of entity attributes. Pre-defining the set of entity states limits the general applicability of the
model,however , as entity attribute values might be arbitrary spans of text. Moreover, entity at-
tributes can be used for tracking entity state transitions. For example, in Figure 1, the location of
fuel can be effectively inferred from text as engine without the explicit mention of the movement
transition in the first sentence. In addition, the phrase converted in the third sentence gives rise to
predicting two transition actions of destruction of one type of energy and creating the other
type.



Figure 1: Example of a procedural text and the predicted attributes and transitions for each entity.
Procedural reading comprehension is the task of answering questions about the underly-
ing process. Sample questions from PROPARA include: ‘What is the process’s input?’,
‘What is the process’s output?’, ‘What is the location of the entity?’.

In this work, we introduce a general formalism to represent procedural text, and develop an
end-to-end neural procedural reading comprehension model. Our formalism represents entities,
their attributes, and their transitions across time, and the model jointly identifies these attributes and
transitions using a dynamic contextual encoding of the text. Our model computes an attribute-aware
representation of the procedural text at a certain timestep by leveraging distributions over predicted
attribute values, either as a span of text or from a pre-defined set of classes. Then, it pairs this
attribute-aware encoding with an entity-aware representation to predict state transitions for entities,
thereby capturing the dynamic nature of the entities in the contextual encoding of the process.

Our experiments show that our method achieves state of the art results across multiple tasks
evaluated in the PROPARA dataset [Mishra et al., 2018] to track entity attributes and their transitions
in scientific processes. Additionally, a simple variant of our model achieves state of the art results
in the NPN-COOKING [Bosselut et al., 2018] dataset.

Our contributions are three-fold: (i) we present a general formalism to model procedural text,
which can be adapted to different domains, (ii) we develop DYNAPRO, an end to end neural model
that jointly and consistently predicts entity attributes and their state transitions, leveraging pre-
trained language models, (iii) we show that our model can be adapted to several procedural reading
comprehension tasks using the entity-aware and attribute-aware representations, achieving state of
art results on several diverse tasks.

2. Related Work

Most previous work in reading comprehension [Rajpurkar et al., 2016] focuses on identifying a
span of text that answers a given question about a static paragraph. In contrast, this paper focuses
on procedural reading comprehension, which inquires about how the states of entities change over
time. There are several previous works that focus on understanding procedural text in multiple
domains. Mishra et al. [2018] introduced the PROPARA dataset, a collection of procedural texts that
describe how entities change during scientific processes (e.g., photosynthesis), which is paired with



questions about several aspects of these processes, such as the entity attributes or state transitions.
Bosselut et al. [2018] focus on cooking recipes, which describe instructions on how to change
ingredients. Math word problems [Kushman et al., 2014, Hosseini et al., 2017, Amini et al., 2019,
Koncel-Kedziorski et al., 2016] describe how the states of entities change throughout mathematical
procedures. Narrative question answering [Weston et al., 2015, Kočiskỳ et al., 2018, Lin et al.,
2019] inquires about the state of a story over time.

These resources have influenced many models (e.g., EntNet [Henaff et al., 2017], QRN [Seo
et al., 2017], MemNet [Weston et al., 2014]) that track entities in narratives. The closest of these
works to ours, however, is the line of work focusing on the PROPARA and NPN-COOKING datasets.
Bosselut et al. [2018] use an attention-based neural network, the neural process network (NPN),
to identify ingredient state transitions in cooking recipes. To track state in scientific processes,
models such as Pro-local and Pro-Global [Mishra et al., 2018] first identify locations of entities
using an entity recognition approach and use manual rules or global structure of the procedural
text to consistently track entities. Tandon et al. [2018] leverage manually defined and KB-driven
commonsense constraints to avoid nonsensical transitions when predicting entity states (e.g., a tree
doesn’t move to a new location). KG-MRC [Das et al., 2019] maintains a knowledge graph of
entities over time and identifies entity states by predicting the location spans with respect to each
entity using a reading comprehension model. NCET (Gupta and Durrett [2019a]) introduces a neural
conditional random field model to maintain the consistency of state predictions. Most recently,
ETBERT [Gupta and Durrett, 2019b] uses transformers to construct representations of each entity
and predict the state transitions from a set of pre-defined classes.

In this paper, we integrate these prior observations, and develop a model that jointly identifies
entities, attributes, and transitions over time. Unlike previous work that is designed to address
either attributes or transitions, our model benefits from the clues that are implicitly and explicitly
mentioned for both entity attributes and transitions. Leveraging both aspects of procedural reading
comprehension leads us to a general and adaptive framework for the task, and an accompanying
model that achieves state of art on several datasets across different domains.

3. Procedural Text Representation

Procedural text consists of a sequence of sentences describing how entities and their attributes
change throughout a process. We introduce a general formalism to represent a procedural text:

p = (E,A, T ), (1)

where E is the list of entities participating in the process, A is the list of entity attributes, and T is
the list of transitions. We formulate the model’s input to be a combination of a query about an entity
attribute and a partial context of the procedural text.

Entities are the participants in a process. For example, in the scientific processes in PROPARA,
entities might include elements such as energy, fuel, etc. In the cooking recipe domain, the
entities could be ingredients such as milk, flour, etc. Entities could be given a priori based on the
task (e.g., PROPARA) or they could be inferred from the context (e.g., math word problems).

Attributes are entity properties that can change over time. We model attributes as functions
Attribute(e) = val that assign a value val to an attribute of the entity e. The entity state at
each time is derived by combining all the attribute values of that entity. Attribute values can be
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Figure 2: DYNAPRO takes the procedural context Xk as input and predicts attributes Ak−1, Ak
and transitions Tk at each time step k. P{?,−,∗} indicates the probability of the location
type among nowhere, unknown, and span of text respectively.. The model uses the
changes in attribute values from time steps k − 1 to k to predict transitions.

either spans of text or can be derived from a pre-defined set of classes. For example, in PROPARA,
an important attribute of an entity is its location, which can be a span of text. The NPN-COOKING

dataset introduces several attributes (such as shape and cookedness) for each ingredient. Example
attributes addressing the entities in PROPARA are modeled as follows:

exists(e) = {nowhere, unknown, span of text}
at loc(e) = l→ Assigns the location l to entity e

Transitions capture changes in the entity states. More specifically, transitions indicate how entity
attributes change over time. We model each transition with an action name and a list of arguments
that include the entity and some attribute values. For example, PROPARA consists of four transition
types : Create(e, loc), Destroy(e), None(e) and Move(e, loc).

4. Model

We introduce DYNAPRO, depicted in Figure 2, an end-to-end neural architecture that jointly predicts
entity attributes and their transitions. DYNAPRO first obtains the representation of the procedural
text corresponding to an entity at each time step (Section 4.2). It then identifies entity attributes
for current and previous time steps (Section 4.3) and uses them to develop an attribute-aware rep-
resentation of the procedural context (Section 4.4). Finally, DYNAPRO uses the entity-aware and
attribute-aware representations to predict transitions that happen at that time step (Section 4.5).

4.1 Task Reformulation

Given a procedural text 〈S0 . . . Sk . . . ST 〉 and an entity e, DYNAPRO encodes procedural context
Xk at each time step k and obtains the entity-aware representation vector Rk(e). The procedural
context is formed by concatenating the query containing the entity name, and a fragment of the
procedural text. The entity name and the query are included in the procedural context to construct



an entity-aware representation of the context. Since entity attributes are changing throughout the
process, we form the context at each step k by truncating the procedural text up to the kth sentence.
More formally, the procedural context is defined as:

Xk(e) = [cls]Qe[sep][Ci]S0 . . . Sk[sep], (2)

where 〈S0 . . . Sk〉 is the fragment of the procedural text up to the kth sentence, Qe is the entity-
aware query (e.g., “Where is e?”), [Ci] includes tokens that are reserved for attribute value classes
(e.g., nowhere, unknown), and [cls] and [sep] are special tokens to capture sentence representations
and separators. Note that the input samples for any paragraph are constructed per sentence and
entity. So the complexity of the input data is |S|∗|E| per procedural text where |S| and |E| are the
average number of sentences and entities in each procedural text respectively.

4.2 Entity-aware Representation

DYNAPRO then uses a pre-trained language model to encode the procedural context Xk(e) from
Equation 2 and returns the entity-aware representationRk(e) = BERT (Xk(e)), whereBERT (wi)
is the embedding of the i-th token from the transformer layer. Hereinafter, we will remove the ar-
gument e from equations for ease of notation.

4.3 Attribute Identification

DYNAPRO identifies attribute values for each entity from the entity-aware representation Rk(e) by
jointly predicting attribute values from a pre-defined set of classes or extracting them as a text span.

Class Prediction Certain attribute values are predicted from a set of pre-defined classes. For in-
stance, the existence attribute of an entity is one of {nowhere, unknown, span of text}. The
distribution Pclassk over pre-defined attribute values is predicted from the entity-aware representa-
tion Rk:

Pclassk = softmax(fθ1(g(Rk))), (3)

where g is a non-linear function, f is a linear function and θ1 are learnable parameters.

Span Prediction Defining all attribute values a priori limits the general applicability of the proce-
dural text understanding model. Some attribute values are only mentioned within a span of text.
For example, the full set of locations an entity can be in may be difficult to explicitly pre-define
into classes, but may be easily searchable in text. For span prediction, we follow the standard proce-
dure of phrase extraction in reading comprehension [Seo et al., 2016] that predicts two probability
distributions over start and end tokens of the span:

Pspank
= [Pstartk , Pendk ]

Pstartk = softmax(fθ2(g(Rk)))

Pendk = softmax(fθ3(g(Rk))),

(4)

where g is a non-linear function, f is a linear function and θ2 and θ3 are learnable parameters used
to compute the probability distributions over start and end tokens of the span.

In order to capture the transitions of entity attributes, our model captures attributes for time steps
k−1 and k given a procedural contextXk. More specifically, we use Equations 3 and 4 to compute
the probability distributions Pclassk−1

, Pspank−1
, Pclassk and Pspank

for both time steps k and k− 1
at given timestep k.



4.4 Attribute-aware Representation

For each entity e at each time step k, DYNAPRO computes attribute-aware representations Rak of
the context by encoding entities and their attributes using the predicted distributions Pspank

and
Pclassk . The intuition is to assign higher weight in the contextual representation to the tokens w
corresponding to the attribute value of the entity at time step k.

Rak =
∑
class

(Rk.Pclassk ·mclass) · Pspank
(w), (5)

where class ∈ {nowhere, unknown, span} are the pre-defined classification of attributes, and
Pclassk and Pspank

denote the probability distributions of attribute values over pre-defined classes
and the span of text respectively (as calculated using Equations 3 and 4). mclass is a vector that
masks out the input tokens that do not correspond to a specific class.

Finally, we model the flow of the context by concatenating attribute-aware representations at
time steps k and k − 1 as:

Rak−1:k
= [Rak , Rak−1

]. (6)

4.5 Transition Classification

DYNAPRO predicts attribute transitions from entity-aware and attribute-aware representations. In
order to make smooth transition predictions and avoid redundant transitions we include a Bi-LSTM
layer before the classification of the transition.

Rseqk = LSTM(h, [Rk, Rak−1:k])

Ptransitionk
= softmax(fθ4(g([Rseqk ]))),

(7)

where h is the hidden vector of sequential layer, θ4 are learnable parameters and Rseqk is the output
of the sequential layer.

4.6 Inference and Training

Training Our model is trained end-to-end by optimizing the loss function below:

losstotal = (lossspan + lossclass)k−1 + (lossspan + lossclass)k + losstransitionk
(8)

Each loss function is defined as a cross entropy loss. (lossspan, lossclass)k and losstransitionk
are

the losses of attribute prediction and the transition prediction modules at time step k, respectively.

Inference At each time step k, the attributes Ak and transitions Tk are predicted given Pspank
,

Pclassk , and Ptransitionk
. The final output of the model consists of two sets of predictions, the

attributes A0...K and transitions T0...K which are combined to track entities throughout a process
given a task-specific objective (see §5.3 for further details).

5. Experiments and Results

5.1 Datasets

We evaluate our model over the PROPARA dataset introduced by [Mishra et al., 2018]. This dataset
contains over 400 manually-written paragraphs of scientific process descriptions. Each paragraph



includes average of 4.17 entities and 6 sentences. The vocabulary size of is 2500. The entities are
extracted by experts and the transitions are annotated by crowd-workers.

We also evaluate our model on the NPN-COOKING dataset introduced by [Bosselut et al., 2018].
This corpus contains ∼65k cooking recipes. Each recipe comes with a set of ingredients tracked
during the process. Training samples are heuristically annotated for attributes and state transitions
by string matching, and dev/test samples are annotated by crowd-workers. We randomly sample
from the training recipes that have ingredients whose location attribute is changed.

5.2 Tasks and metrics

We evaluate DYNAPRO on three tasks in PROPARA and one task in NPN-COOKING.

Document-level Predictions This task was introduced by Tandon et al. [2018] and evaluates four
different questions per entity and process. These questions involve identifying whether the entity is
an (1) input or (2) output of the process, and identifying the (3) moves and (4) conversions of the
entity in the process. The final metrics reported for this evaluation are the average precision, recall
and F1 score across all four questions.

Sentence-level Predictions This task was introduced by Mishra et al. [2018] and considers three
categories of questions. The first, Cat− 1, asks if a specific entity is created/destroyed/moved
in the process. Cat− 2 asks the time step at which an entity is created/destroyed/moved.
Finally, Cat− 3 asks about the location where an entity is created/destroyed/moved. The
evaluation metric calculates the score of all transitions for each question and reports the macro- and
micro-average of the scores among three question types.

Action Dependencies This task was recently introduced by Mishra et al. [2019] to check whether
the actions predicted by a model influence future events in the procedural paragraph. The metrics
reported for this task are the precision, recall, and F1 scores of the dependency links between events
averaged over all paragraphs.

Location Prediction in Recipes The task is to identify the location of different entities in cooking
recipes. In this domain, the list of attributes are fixed. We evaluate by measuring the change in
location [Bosselut et al., 2018] and computing F1 and accuracy in attribute prediction.

5.3 Implementation Details

We use the official implementation of BERTbase from the huggingface library [Wolf et al.,
2019]. The learning rate for training is 3e−5 and the training batch size is 8. The hidden size of the
sequential layer is set to 1000 and 200 for class prediction and transition prediction, respectively.

We use the predicted Ak−1 to initialize the attribute of timestep 0, and at any other timestep, we
use the Ak predictions for finding the value of an attribute at timestep k. In the sentence level eval-
uation task introduced in Mishra et al. [2018], the consistency is not required. The inference phase
for this task only uses the attribute predictions. For the document-level predictions, we construct
the final predictions by favoring the transition predictions. In case of inconsistency (i.e., there is no
valid attribute prediction to support the transition), we refer to the attribute value to deterministically
infer the transition.



Sentence-Level Document Level Action Dependency
Model Cat-1 Cat-2 Cat-3 Ma-Avg Mi-Avg P R F1 P R F1
ProLocal 62.7 30.5 10.4 34.5 34.0 77.4 22.9 35.3 24.7 18.0 20.8
EntNet 51.6 18.8 7.8 26.1 26.0 50.2 33.5 40.2 32.8 38.6 35.5
QRN 52.4 15.5 10.9 26.3 26.5 55.5 31.3 40.0 32.6 30.3 31.4
ProGlobal 63.0 36.4 35.9 45.1 45.4 46.7 52.4 49.4 43.4 37.0 39.9
KG-MRC 62.9 40.0 38.2 47.0 46.6 64.5 50.7 56.8 46.5 39.5 42.7
NCET 70.6 44.6 41.3 52.2 52.3 64.2 53.9 58.6 - - -
NCET + ELMo 73.7 47.1 41.0 53.9 54.0 67.1 58.5 62.5 50.4 28.6 36.5
ETBERT 73.6 52.6 - - - - - - - - -
XPAD - - - - - 70.5 45.3 55.2 62.0 32.9 43.0

DYNAPRO 72.4 49.3 44.5 55.4 55.5 75.2 58.0 65.5 64.9 32.9 43.7

Table 1: Results comparing DYNAPRO to prior state of the art methods on sentence-level,
document-level and Action Dependency tasks of PROPARA (test set).

To adapt the results of DYNAPRO to identify action dependencies, we postprocess the results
using similar heuristics described in the original task. To adapt DYNAPRO to the NPN-COOKING

dataset, we use a 243-way classification to predict attributes because the attributes are known apriori.

5.4 Results and Analyses

Table 1 and Table 3 compare DYNAPRO with previous models (detailed in Section 2) designed for
the PROPARA and NPN-COOKING datasets. As shown in the tables, DYNAPRO outperforms these
models in most of the evaluations.

Question P R F1
Inputs 93.0 74.0 82.4
Outputs 81.2 91.5 86.0
Conversions 77.5 58.3 66.5
Move 53.7 47.8 50.6

Table 2: Precision, Recall and F1 of DY-
NAPRO on each question in PROPARA

document-level predictions.

Document-level Task We observe the most
significant gain (3% absolute in F1) on the
document-level task, indicating the model
achieves a better global understanding of the
procedural text by making joint predictions
of entity attributes and transitions. Overall,
in most document-level tasks, DYNAPRO pre-
dicts transitions with higher precision. In addi-
tion, Table 2 shows DYNAPRO’s performance
on each individual question. The movement

question achieves the lowest score whereas the
input/output questions are correctly answered more frequently. This pattern is likely due to the
fact that movements require two span predictions while create/destroy transitions, which affect
the input/output questions, are less complex.

Sentence-level Task DYNAPRO outperforms the state-of-the-art models on the macro- and micro-
average of the three question scores, and gives comparable results to previous work on each in-
dividual question type. We note that ETBERT [Gupta and Durrett, 2019b] only predicts actions
(Create, Destroy, Move), but fails to predict location attributes as spans. DYNAPRO obtains a
good performance on the Cat− 1 and Cat− 2 questions while also learning to predict answers
for questions with more complex structure. We carefully analyze the prediction scores of differ-



ent transitions (Create, Destroy, Move) for each category. In Cat− 1, our model is better than
ETBERT for destroy transitions, but is worse for movement and create transitions. In Cat− 2,
our model is better than ETBERT for destroy and create transitions, but is worse than ETBERT
for movement transitions. Note that our model predicts transitions between time steps by evaluating
changes in span predictions, while ETBERT directly predicts the transition class. Directly predict-
ing transitions results in more accurate predictions for movement transitions because many of them
are explicitly mentioned in the text, but it does not identify the exact locations of movements. On
the other hand, most destroy and create transitions are not explicitly mentioned in the text, and
using our system to identify changes in entity classes results in more accurate predictions.
Action Dependency DYNAPRO outperforms all previous work with F1 score of 43.7. Note that
XPAD [Mishra et al., 2019] explicitly favors predicting state changes that result in dependencies
across steps. In contrast, DYNAPRO is only optimized to track entities.

Model F1 Accuracy
NPN 35.1 51.3
KG-MRC - 51.6
DYNAPRO 36.3 62.9

Table 3: F1 and accuracy on the location
prediction task in NPN-COOKING.

Location Prediction in Recipes The NPN-COOKING

dataset of Bosselut et al. [2018] contains a
large number of cooking recipes whose ingredi-
ents can be mapped to various attributes. (e.g.,
location, cookedness, etc.) A simple variant of
DYNAPRO achieves the best performance at predict-
ing the locations of ingredients, showcasing the
importance of procedural text encoding over time.

5.5 Ablation Studies and Analyses

In order to better understand the importance of DYNAPRO’s components, we evaluate different
variants of DYNAPRO on the document-level task of the PROPARA dataset:

(A.1) No class prediction – the model only uses span predictions.
(A.2) No transition classification – the model does not include transition classification.
(A.3) No span prediction – any token in the span can be predicted using a classifier over the

document’s words along with the pre-defined class values.
(A.4) No attribute-aware representation – the model only considers entity-aware representations

in Equation 7 for transition predictions.
(A.5) CLS instead of attribute-aware representation – the model uses the [CLS] encoding of

Rk instead of the attribute-aware representation Rak .
(A.6) No sequential modeling – the model removes the sequential smoothing of the predicted

transitions by removing the LSTM from Equation 7.
(A.7) Full procedural input – uses the full text of the procedure instead of the truncated text Xk

at time step k.

Table 4 shows that removing each component from DYNAPRO hurts the performance, indicating
that joint prediction of attribute spans with classes (A.1), and transitions (A.2) are all important in
procedural reading comprehension. Importantly, we see that removing span prediction by using a
single classifier over a joint vocabulary of document tokens and pre-defined attribute classes (A.3)
hurts the performance. We also see the importance of combining entity-aware representations with
attribute-aware representations that incorporate the flow of context (A.4), and constructing attribute-
aware representations in comparison to using a [CLS] token (A.5). The study also shows that using



Ablation F1
Full model (DYNAPRO) 71.9

(A.1) No class prediction 53.8
(A.2) No transition prediction 66.3
(A.3) No span prediction 55.1
(A.4) No attribute-aware representation 69.5
(A.5) CLS instead of attribute-aware representation 70.9
(A.6) No sequential modeling in transition module 68.8
(A.7) Full procedural input 61.0

Table 4: Ablation study of different components in DYNAPRO by comparing F1 score on PROPARA

Document Level task (development set).

a sequential layer for transition modeling can improve final predictions (A.6). Finally, we see the
importance of truncating sentences up to a certain time step (A.7), rather than considering the full
document. When we increase the context size to include the full document, DYNAPRO does not
capture the sequential nature of the procedure and cannot identify the correct attributes at each time
step. This shortcoming is partially because the larger document-level context increases the scope of
possible span candidates. Over this larger search space, span predictions affect attribute representa-
tions more significantly than other predictions (such as pre-defined classes and transitions).

5.6 Error Analysis

Qualitative Table 5 shows three types of common mistakes in the final predictions. In the first
example, DYNAPRO successfully tracks the blood entity while it circulates in the body, yet there is
a mismatch of what portion of the text it chooses as the span. In the second example, the model cor-
rectly predicts the location of carbon dioxide as blood, but there is not enough external knowl-
edge provided for the model to predict that this entity gets destroyed after its removal. In the third
example, the model mistakenly predicts the air and petrol as a container for the energy, but
since the changes are explicitly happening to the container, they do not propagate to the energy.
From these analysis we identified three common patterns in DYNAPRO’s errors:

Incorrect Class Prediction Our analyses show that most errors are due to incorrect predictions
of unknowns vs. spans (∼ 34% of the times unknown location should be predicted, DYNAPRO

predicts a span). Here, we present the confusion matrix of class predictions:

• Gold label as nowhere: our system predicts attribute as nowhere (80%), unknown (8%), and
span of text (12%).
• Gold label as unknown: our system predicts attribute as unknown (56%), nowhere (10%),

and span of text (34%).
• Gold label as span of text: our system predicts attribute as span of text (67%), unknown

(18%), and nowhere (15%).



# Sentence Label Prediction
1.1 Blood enters the right side of your heart. heart right side of your heart
1.2 Blood travels to the lungs. lungs lungs
1.3 Carbon dioxide is removed from the blood lungs lungs
1.4 Blood returns to left side of your heart heart left side of your heart

2.1 Blood travels to the lungs blood blood
2.2 Carbon dioxide is removed from the blood. - ?

3.1 Fuel converts to energy when air and petrol mix. - air and petrol
3.2 The car engine burns the mix of air and petrol. engine air and petrol
3.3 Hot gas from the burning pushes the pistons. piston air and petrol
3.4 The resulting energy powers the crankshaft. crankshaft crankshaft

Table 5: Examples of correct and incorrect predictions of DYNAPRO. Entities in the first, second,
and third examples are blood, carbon dioxide, energy, respectively.

Incorrect Span Predictions Among predicted spans, 55% of spans are identified correctly. For
incorrect span predictions about 9% are due to incorrect span boundary predictions (Predicting cd

instead of cd and dvd) and the rest are due to finding an incorrect phrase.
Inconsistent Transitions We categorize possible inconsistencies in transition predictions into
three categories. (The percentages show how many times that inconsistency was observed for all
predictions):

• Creation (2.0%): When the supporting attribute is predicted to be non− existence or the
previous attribute shows that the entity already exists.
• Move (1.5%): When the predicted attribute is not changed from previous prediction or it

refers to a non− existence case.
• Destroy (1.0%): When the predicted attribute for the last timestep is non− existence.

6. Conclusion

We introduce an end-to-end model that benefits from both entity-aware representations and attribute-
aware representations to jointly predict attribute values and their transitions for entities in a process.
We present a general formalism to model procedural texts, and introduce a model to translate pro-
cedural text into that formalism. We show that entity-aware and temporal-aware construction of the
input helps yield better entity-aware and attribute-aware representations of the procedural context.
Finally, we show that our model can make inferences about state transitions by tracking transitions
in attribute values. Our model achieves state of the art results on various tasks over the PROPARA

and NPN-COOKING datasets. Future work involves extending our method to automatically identi-
fying entities and their attribute types and adapting to other domains.
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