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1 Introduction

Structured data repositories, more commonly known as knowledge bases (KBs), play a central role
in many important applications. For example: Google Maps1 is based on a KB of points of interest
and their attributes and Google Scholar2 is built on top of a KB of scientists, their publications and
collaborations. Since automatically constructed KBs often exhibit incorrect or missing information,
leveraging humans–and particularly those who interact with the KB–to help with KB curation can be
particularly effective. Some KBs are already designed to solicit and integrate user feedback: NELL
prompts users to validate facts it has inferred [13]; Google Maps3 has begun to ask users yes-or-no
questions about the attributes of places they have visited; and Angeli et al. use active learning to
collect labels for training a relation extraction system for KB construction [3, 4].

Effectively leveraging human workers to improve entity resolution (ER)–a prominent component of
many automated KB construction approaches–is a difficult task that has recently become the subject
of significant study. In both theory and practice, strategies for ER with a human-in-the-loop are
centered around using crowdsourcing to collect pairwise labels (i.e., whether two mentions refer
to the same ground-truth entity) [17, 15, 7, 16, 11]. While these approaches may be effective, they
also have a number of disadvantages, especially in the context of KB construction. First, crowd
workers are known to be noisy and have been shown to perform poorly on difficult domain specific
tasks [8]. Second, these approaches do not leverage users browsing the KB who are likely to be
more familiar with the KB’s content than arbitrary crowd workers. It is possible to target KB users
with pairwise label solicitations but labeling requests can be disruptive (without costly UI design).
Moreover, pairwise techniques limit the information content of user feedback. For example, an expert
may be willing to provide far richer feedback than pairwise labels if presented with the opportunity.

In this work, we develop entity-centric attribute feedback, a framework for user interaction and
automatic feedback integration that addresses each of these issues. In our model, we assume that
users interact with a KB similar to Google Scholar. Each KB entity has a corresponding profile
that lists its relations and attributes (e.g., papers and collaborators). Rather than ask users to label
mention pairs, in our model, while browsing a particular profile, a KB user may identify any incorrect
and missing attributes. Instead of simply adding or subtracting those attributes from the profile,
the feedback may trigger a repartitioning of the underlying mentions, which can resolve many ER
mistakes at once [18]. Unlike methods based on pairwise labeling, our browsing-based model is non-
intrusive to user experience and allows users to provide feedback where they have expertise–which
mitigates noise (especially in comparison to crowd workers). Attribute feedback is also powerful: a
single piece of attribute feedback can contain as much information as multiple pairwise labels.

1maps.google.com
2scholar.google.com
3maps.google.com
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m1 = {
  title={Type classes in Haskell},
  author={Hall, C. V. and Hammond, K. and Jones, S. and Wadler, P.},
  journal={Programming Languages and Systems},
  year={1996},
}

m2 = {
  title={The Implementer’s Dilemma: A Mathematical Model of 
         Compile Time Garbage Collection},
  author={Jones, S. and Tyas, A.},
  booktitle={Functional Programming, Glasgow 1993},
}

m3 = {
  title={Imperative functional programming},
  author={Peyton Jones, S. and Wadler, P.},
  booktitle={Principles of programming languages},
  year={1993},
}

(a) Mentions.

Names:
X   S. Jones
X   S. Peyton Jones
+   Add Name

Colleagues:
X   C. V. Hall               X   P. Wadler
X   K. Hammond        X   A. Tyas
+   Add colleague

Venues:
X   Programming Languages and Systems 
X   Functional Programming
X   Principles of Programming Languages
+   Add venue

Publications
X   Type classes in Haskell.
X   The Implementer’s Dilemma: a Mathematical Model of Compile…
X   Imperative functional programming.
+   Add publication

(b) Profile.

Figure 1: KB Sketch. The attribute projection of 3 mentions–m1,m2,m3 (Figure 1a)–is displayed
in the profile (Figure 1b). Users may augment the profile with new attributes (green text) or reject
attributes (red ‘X’). m1 and m3 are mentions of the same entity (indicated by the yellow color).

We compare entity-centric attribute feedback to pairwise labeling approaches in simulations of
interactive ER. We experiment with two real-world datasets: one containing citations records with
ambiguous author names and the other containing ambiguous patent assignees. Our experiments
reveal that attribute feedback is superior to pairwise labels with respect to the number of queries
necessary to discover the ground-truth. In one experimental setting, we show that the same algorithm
requires 70% fewer queries when it solicits attribute feedback than when it solicits pairwise labels.

2 Entity-centric Attribute Feedback

We provide an overview of KB construction via entity resolution (ER) and give an example of our
interactive framework. Then, we define ER and present formal models for: mentions and entities,
attribute feedback and interaction with a KB.

Interactive KB Sketch. A KB is built from a collection of mentions. Each mention refers to
exactly one real-world entity. For example, Figure 1a contains three mentions of S. Jones, where m1

and m3 refer to one real-world entity (the yellow entity) and m2 refers to a different real-world entity
(the blue entity). An ER algorithm is used to partition the mentions into clusters. A profile page is
built for each cluster using the attributes of the corresponding mentions (Figure 1b). Users interact
with profiles by identifying incorrect and missing attributes.

Entity Resolution. More formally, the input to ER is a set of mentions, M = {mi}ni=0. Each
mention, m, refers to a single ground-truth entity, C?(m) = e?. The output of an ER algorithm is
a partition of the mentions; each clustering of the partition is known as an inferred entity, Ĉ. The
goal is to recover a partition in which each inferred entity contains mentions that all refer to the same
ground-truth entity and in which no two inferred entities correspond to the same ground-truth entity.
ER is performed using a learned pairwise similarity model, S :M×M→ [0, 1].

Data Model. Both mentions and entities possess attributes. For a mention m, if C?(m) = e? then
the attributes of m must be a subset of the attributes of e?, i.e, A(m) = {ai, · · · , aj} ⊆ A(e?),
where A(·) returns the attributes of its argument. The attribute projection of an inferred entity, Ĉ, is
the union of the attributes of all its mentions: PA(Ĉ) =

⋃
m:Ĉ(m) A(m). To mitigate ambiguity, the

mentions and entities must obey the following two properties:

1. ∀e?1, e?2 ∈ E?, A(e?1) 6⊆ A(e?2) ∧A(e?2) 6⊆ A(e?1); and
2. ∀m ∈M,∀e? ∈ E?\C?(m) A(m) 6⊆ A(e?).

Here, E? is the set of ground-truth entities.

The first property guarantees that no ground-truth entity possesses a collection of attributes that
are a subset of any other ground-truth entity’s attributes. The second property guarantees that each

2



mention’s attributes are a subset of exactly one ground-truth entity’s attributes. These properties are
intuitive and in our experiments with real-world data (Section 4), the properties hold. Note that these
two properties neither restrict two ground-truth entities nor two mentions from having some attributes
in common, even if both mentions refer to different ground-truth entities.

Attribute Feedback. When browsing the profile of an inferred entity, the user sees its attribute
projection (as in Figure 1b). If the user identifies an attribute, a, that she believes is incorrect, she can
provide a rejection, f−ai (i indexes the total feedback count). For example, in Figure 1b, the user can
click the red ‘X’ next to A. Tyas to express the belief that S. Jones never coauthored with A. Tyas.
Alternatively, the user may augment the profile with a missing attribute, a′, notated, f+a′

i .

In the attribute feedback framework, two seemingly opposite pieces of feedback can both be con-
sidered correct. For example, in the profile in Figure 1b, a user can reject the coauthor A. Tyas
if she believes that the profile belongs to the yellow entity, or, the user can reject the coauthor
P. Wadler if she believes that the profile belongs to the blue entity. Neither piece of feedback is
incorrect. However, attribute feedback can be characterized as inconsistent with the ground-truth.
A rejection f−ai made with respect to an inferred entity, Ĉ, is inconsistent with the ground-truth if,
∀m ∈ Ĉ, a ∈ PA(C

?(m)). In the example above, if a cluster contained m1 and m3 (but not m2),
the rejection of any attribute would be inconsistent with the ground-truth. An augmentation f+a

i is
inconsistent with the ground-truth if, @m ∈ Ĉ, a ∈ PA(C

?(m)).

Inference for Attribute Feedback. Attribute feedback is a powerful style of interaction. For
example, consider a rejection f−ai made with respect to Ĉ = {mi,mj}. Without loss of generality,
assume that a ∈ A(mj). If the feedback is consistent then mi does not belong to the same cluster as
any mention that contains a. This set contains at least one mention (mj) but possibly many more.

Attribute feedback can also be ambiguous. Consider a rejection, f−ai , made with respect to Ĉ =
{mi,mj ,mk}. Without loss of generality, assume that neither mi nor mk contains the attribute
a. Even if the feedback is consistent, the precise target(s) of the feedback are ambiguous. That is,
letting {·} denote a partition and | a cluster boundary, the following partitions respect the feedback:
{mi,mj |mk}, {mi|mj |mk}, {mi|mj ,mk} and {mi,mk|mj}. Note that the only partition that does
not respect the feedback is the complete partition, {mi,mj ,mk}. As a concrete example, consider
the rejection of A. Tyas from the profile above; the only partition of m1,m2,m3 that does not respect
such a rejection is the complete partition.

Entity-centric Interaction Model. Our interaction model proceeds in rounds. In each round the
user selects an inferred entity, Ĉ; this simulates the user browsing the corresponding profile in the
KB. The user is shown PA(Ĉ), i.e., the attribute projection of Ĉ (as in Figure 1b). The user may then
provide attribute feedback with respect to Ĉ. The KB stores the feedback, ER is rerun and the next
round begins. Note that this differs from virtually all interaction models for ER in two ways. First,
the interaction style is entity-centric, i.e., the KB can only receive feedback made with respect to Ĉ,
an inferred entity of the user’s choosing. Second, the feedback is made with respect to the attributes
of Ĉ and not directly with respect to any (pair of) mentions.

3 Simulation Framework

We design a framework for simulating interactive ER so that we may compare entity-centric attribute
feedback and pairwise feedback. Our framework is inspired by ER with an oracle [17, 15, 7, 5, 10, 1].
While ER with an oracle is somewhat unrealistic, it provides a formal basis for analyzing and
experimenting with various types of feedback. In the following descriptions, the mentions form a
graph with an edge between each pair. If a pair of mentions refer to the same ground-truth entity the
corresponding edge is positive; all other edges are negative (see Figure 2).

ER with an Oracle (ERO). This framework proceeds in rounds. During each round, an ER
algorithm adaptively queries the oracle with a pair of mentions. The oracle’s feedback is either
positive or negative indicating that the pair either do or do not refer to the same ground-truth entity,
respectively. Upon receiving a positive or negative label, the signs of additional edges may be inferred
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Figure 2: Black circles (labeled A–I) and gray circles represent mentions and inferred entities,
respectively. Solid black lines and missing lines between mentions indicate known positive and
negative edges, respectively. Dashed lines indicate unknown edges with similarities annotated.

via transitivity. Interaction ends when the sign of each edge is known (or inferrable). The goal is
two-fold: first, minimize the number of queries to the oracle and second, maximize recall (i.e., known
positive edges) as efficiently as possible.

KB ER with an Oracle (K-ERO). Rather than allow the ER algorithm to select any edge (i.e.,
mention pair), each round begins with the oracle selecting an inferred entity, Ĉ. Next, the ER
algorithm chooses a pair of mentions such that at least one of the mentions belongs to Ĉ–thereby
satisfying entity-centricty (Section 2). The oracle labels the edge as before. Unlike ERO, after each
round of interaction, the ER algorithm constructs a (potentially) new partition of the mentions. As
before, a primary goal is to minimize the number of queries to the oracle. However, in K-ERO, rather
than recall, a secondary goal is to maximize the pairwise F1-score of the partition of the mentions in
each round. This is appropriate in that F1-score is a common measurement for evaluating ER [9, 12].

ERO with Attribute Feedback. Both ERO and K-ERO can be adapted for attribute feedback.
Instead of querying the oracle with a mention pair, in the attribute feedback setting, the oracle is
shown the corresponding attribute projection. The oracle may provide a consistent rejection or
augmentation (Section 2). For some pairs of mentions, neither a consistent rejection nor a consistent
augmentation can be returned; in these cases the oracle my respond with “all good.”

Attribute feedback has two advantages over pairwise feedback. First, when the oracle rejects attribute
a with respect to a queried pair, negative edges are inferrable between one of the queried mentions
and all mentions that exhibit the attribute a. This is at least as powerful as a negatively labeled edge
in the pairwise setting. When the oracle augments a projection or responds with “all good,” the
corresponding edge is positive. But, an augmentation also provides additional information about a
missing attribute; this information can be utilized by inference. Consider querying the oracle with
the edge {mi,mj} and a resulting augmentation, f+a

i . If, after labeling the edge positively, the
corresponding inferred entity does not contain the attribute a, ER may make additional merges for
the sake of respecting the augmentation. This can help improve the F1-score.

3.1 Query Strategies

We test four strategies for selecting edges with which to query the oracle. All methods have access to
a similarity function, S :M×M→ [0, 1] (in our work, and in other related work, the similarity of
an edge is treated as the probability that the edge is positive). For each method, we also experiment
with a corresponding entity-centric version which must select an edge such that at least one endpoint
is in the inferred entity chosen by the oracle (thereby obeying entity-centricity). See Figure 2 for a
visual illustration of a partition of the mentions and the corresponding edge selected by each strategy.

WANG [17]. In each round, this strategy selects the unknown edge with the largest similarity score to
be labeled by the oracle. In Figure 2, WANG selects edge (H, I) because it has the highest score.

WANG-F1. This strategy is inspired by the WANG strategy but is designed to optimize for F1-score
rather than recall. In each round, WANG-F1 finds the most similar across-cluster edge and the least
similar within-cluster edge. In terms of F1-score, labeling an across-cluster edge as positive leads to a
merger and thus an increased number of true positives; labeling a within-cluster edge as negative splits
the cluster reducing the number of false positives. Let e0 = (i+, j+) and e1 = (i−, j−) be the most
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and least similar such edges, respectively. Then, WANG-F1 selects argmaxe∈{e0,e1} |S(e)− 0.5|,
i.e., the edge most likely to induce a split or merge. In Figure 2, WANG-F1 selects edge (E, G)—the
unknown, cross-cluster edge with the maximum value of |S(e)− 0.5|.
EDGE [7]. This strategy selects the unknown edge with the largest benefit. The benefit of an unknown
edge is be(u, v) = S(u, v) · |cT (u)| · |cT (v)| where cT (u) is the number of mentions that have positive
edges to u. In Figure 2, EDGE selects (E,G) because it has the largest benefit (be(E,G) = 0.9 · 2 · 1).

EDGE-F1. For each edge (u, v), EDGE-F1 computes the benefit of that edge, be(u, v). If (u, v) is a
within-cluster edge, EDGE-F1 also computes the expected number of false positives reduced if that
edge is labeled negatively: re(u, v) = (1− S(u, v)) · |cT (u)| · |cT (v)|. If (u, v) is an across-cluster
edge then re(u, v) = 0. EDGE-F1 selects the edge with highest value of be(·, ·)+ re(·, ·). In this way,
EDGE-F1 tries to select an edge such that after labeling the edge and repartitioning the mentions, the
F1-score will be most improved. In Figure 2, EDGE-F1 selects edge (A, B) because it has the largest
expected effect on the F1-score (be(A,B) + re(A,B) = 0.2 · 1 · 3 + 0.8 · 1 · 3).

4 Experiments

We compare pairwise (P) and attribute (A) feedback in the unconstrained (ERO) and entity-centric (K-
ERO) settings (Section 3). For each feedback style and setting, we experiment with 4 query strategies
(Section 3). We measure the F1-score per query and total number of queries required for each
combination of: feedback style, interaction setting and query strategy. We run experiments on 2 real-
world datasets: the REXA author name coreference dataset [6] and a subset of the assignee records
from the PatentsView4 database with annotation by NBER5. In order to expedite our experiments, we
limit the number of edges considered by EDGE and EDGE-F1 strategies in each round to 1000.

4.1 Setup

For the REXA dataset, we train a pairwise classifier that scores the similarity of two mentions. We
use a linear model with features similar to [14, 19]. For the patents data, we set the similarity of two
mentions to be the Jaro-Winkler distance between the corresponding assignees [20]. All similarity
scores for Rexa are transformed to [0, 1] via a sigmoid (the Jaro-Winkler scores are already in[0, 1]).

We use KwikCluster to create an initial partition of the mentions with respect to their similarity
scores [2]. We also experiment with initialization to the complete partition (i.e., a single cluster of all
mentions) and the shattered partition (i.e., each mention in a singleton cluster). The complete and
shattered initializations help us to understand how the strategies perform in the case of severe over-
and under-merging. In our experiments, these partitions are used as the starting KB state.

4.2 Results

Figure 4 shows the number of queries required to discover the ground-truth for both datasets under
various settings. In the entity-centric setting (K-ERO), attribute feedback leads to faster discovery
of the ground-truth partition than pairwise feedback in 21 out of 24 experimental conditions. In the
unconstrained setting (ERO), attribute feedback is always better than pairwise feedback. In some
cases, the advantage due to attribute feedback is very significant: WANG-F1–one of the strongest
strategies across datasets and initializations–requires 70% fewer queries when receiving entity-centric
attribute feedback than when receiving entity-centric pairwise feedback for the PatentsView dataset.

None of the query strategies is always best. However, the results show that the EDGE and WANG-F1
strategies are often most performant. The EDGE-F1 strategy is often less performant than the other
methods. This is most pronounced by the fact that it performs worse in the unconstrained pairwise
setting than the entity-centric setting. EDGE-F1 could be hindered by its preference for querying
edges that are likely to be negative. This suggests that rapid discovery of positive edges is important
for the sake of both minimizing the number of queries to the oracle and maximizing F1-score.

Finally, we investigate the improvement in F1-score, per query, of each strategy. Across settings,
we find that no strategy consistently improves the F1-score fastest (see Figure 3b for an example).

4http://www.patentsview.org/
5https://sites.google.com/site/patentdataproject/Home/downloads
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(a) Effect of attribute feedback (Rexa). (b) Impact of query strategy (Rexa).

Figure 3: Number of queries vs. micro F1 (across all blocks/canopies) with respect to different query
strategies and feedback styles.

Set. W-K W-C W-S E-K E-C E-S W-F-K W-F-C W-F-S E-F-K E-F-C E-F-S
K-A 13382 10466 9683 7477 7224 6655 7480 8288 6451 8094 8657 6502
K-P 12957 10506 9672 15724 11284 9959 14014 15171 9696 23314 15918 9908
A 6204 6135 6291 6563 6616 6573 6221 6322 6097 10673 10890 10790
P 9500 9500 9500 10109 10109 10109 9727 19234 9500 32523 32550 32521

(a) Rexa: number of queries.
Set. W-K W-C W-S E-K E-C E-S W-F-K W-F-C W-F-S E-F-K E-F-C E-F-S
K-A 35890 21785 21904 12682 9473 9453 9340 8739 7470 12469 9653 9599
K-P 37041 21792 21888 47497 25568 25677 31655 69871 21860 47120 25441 26090
A 7353 7350 7444 8546 8549 8608 10285 8382 7780 8562 8479 8593
P 21735 21735 21735 23096 23096 23096 21735 64157 21735 23093 23094 23093

(b) PatentsView: number of queries.

Figure 4: Number of queries for Rexa and PatentsView datasets. K-A, K-P, A, and P represent the
attribute and pairwise variants of the K-ERO and ERO settings, respectively. W, E, W-F and E-F
represent WANG, EDGE, WANG-F1 and EDGE-F1 strategies, respectively. K, C and S represent
KWIK, COMPLETE and SHATTERED initializations.

This further highlights the importance of discovering positive edges over negative edges, even when
the initialization contains significant over-merging. The plots also imply that feedback style (i.e.,
attribute or pairwise) has a larger effect on performance than the query strategy.

5 Discussion and Conclusion

In this work we introduce entity-centric attribute feedback, a new, formal style of KB interactivity.
Unlike previous approaches based on actively soliciting arbitrary users (e.g., crowd workers) for
pairwise labels, our approach makes it natural to collect feedback from users browsing the KB,
especially with respect to entities that they are likely to be familiar with. We define a formal model
for entities, mentions and attributes, discuss the power of attribute feedback and demonstrate its
superiority to pairwise feedback in experiments on real-world data.

Our work adds an important new component to the landscape of interactive KB construction and
illuminates a number of interesting areas for future investigation. For example, as in the recent
work on ERO, we are interested in designing new query strategies and formally studying their
query complexity in the K-ERO setting. Analyzing the K-ERO setting with a noisy oracle is also an
important next step (we note that noisy oracles have been rigorously analyzed in the ERO setting [10]).
We are simultaneously interested in designing scalable integration algorithms for user feedback. These
algorithms will require the development of new data structures and representations of user feedback.
Our work provides the tools for both theoretical and empirical study of interactive KBs. We hope that
the entity-centric attribute feedback framework spurs increased discussion of methods for interactive
KB curation among members of the AKBC community.
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