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Thesis: 
 
We will never really understand learning 
until we build machines that  
•  learn many different things,  
•  from years of diverse experience, 
•  in a staged, curricular fashion,  
•  and become better learners over time. 



NELL: Never-Ending Language Learner 

The task: 
•  run 24x7, forever 
•  each day: 

1.  extract more facts from the web to populate the ontology 
2.  learn to read (perform #1) better than yesterday 

 
Inputs: 
•  initial ontology (categories and relations) 
•  dozen examples of each ontology predicate 
•  the web 
•  occasional interaction with human trainers 
 



NELL today 

Running 24x7, since January, 12, 2010 
 

Result: 
•  KB with ~120 million confidence-weighted beliefs 
•  learning to read  
•  learning to reason 
•  extending ontology 
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Improving Over Time 
 Never Ending Language Learner 
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[Mitchell et al., CACM 2017] 

reading skill 10’s of millions of beliefs 



Semi-Supervised Bootstrap Learning 
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it’s underconstrained!! 
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Learn which 
noun phrases 
are cities: 



 hard 
(underconstrained) 

semi-supervised 
learning 

Key Idea 1: Coupled semi-supervised training: 
multi-view and multi-task 

Y: person 

X: noun phrase 

f: X à Y 
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Key Idea 1: Coupled semi-supervised training: 
multi-view and multi-task 

much easier 
 (more constrained) 

semi-supervised  
learning 

Y: person 

X: noun phrase 

team 
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noun phrase 
text context 
“ __ is my son” 

noun phrase 
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noun phrase 
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f: X à Y 



x: 

 
Supervised training of 1 function: 
 

y: person 

 



x: 

y: person 

 

 
Coupled training of 2 functions: 
 



NELL Learned Contexts for “Hotel” (~1% of total) 

"_ is the only five-star hotel”  "_ is the only hotel” "_ is the perfect 
accommodation"  "_ is the perfect address”  "_ is the perfect lodging” "_ is the 
sister hotel” "_ is the ultimate hotel"  "_ is the value choice” "_ is uniquely 
situated in” "_ is Walking Distance” "_ is wonderfully situated in” "_ las vegas 
hotel” "_ los angeles hotels” "_ Make an online hotel reservation” "_ makes a 
great home-base” "_ mentions Downtown” "_ mette a disposizione” "_ miami 
south beach” "_ minded traveler” "_ mucha prague Map Hotel” "_ n'est 
qu'quelques minutes” "_ naturally has a pool” "_ is the perfect central location” 
"_ is the perfect extended stay hotel”  "_ is the perfect headquarters” "_ is the 
perfect home base”  "_ is the perfect lodging choice"  "_ north reddington 
beach” "_ now offer guests” "_ now offers guests” "_ occupies a privileged 
location” "_ occupies an ideal location” "_ offer a king bed” "_ offer a large 
bedroom” "_ offer a master bedroom”  "_ offer a refrigerator” "_ offer a separate 
living area"  "_ offer a separate living room” "_ offer comfortable rooms” "_ 
offer complimentary shuttle service”  "_ offer deluxe accommodations” "_ offer 
family rooms” "_ offer secure online reservations” "_ offer upscale amenities”  
"_ offering a complimentary continental breakfast” "_ offering comfortable 
rooms” "_ offering convenient access” "_ offering great lodging” "_ offering 
luxury accommodation”  "_ offering world class facilities” "_ offers a business 
center"  "_ offers a business centre” "_ offers a casual elegance” "_ offers a 
central location” “_ surrounds travelers”   … 



NELL Highest Weighted* string fragments: “Hotel”   
    

              1.82307 SUFFIX=tel
 1.81727 SUFFIX=otel
 1.43756 LAST_WORD=inn
 1.12796 PREFIX=in
 1.12714 PREFIX=hote
 1.08925 PREFIX=hot
 1.06683 SUFFIX=odge
 1.04524 SUFFIX=uites
 1.04476 FIRST_WORD=hilton
 1.04229 PREFIX=resor
 1.02291 SUFFIX=ort 
 1.00765 FIRST_WORD=the
 0.97019 SUFFIX=ites
 0.95585 FIRST_WORD=le 
 0.95574 PREFIX=marr
 0.95354 PREFIX=marri 
 0.93224 PREFIX=hyat
 0.92353 SUFFIX=yatt  
 0.88297 SUFFIX=riott
 0.88023 PREFIX=west
 0.87944 SUFFIX=iott   * logistic regression 



Type 1 Coupling: Co-Training, Multi-View Learning 

Theorem (Blum & Mitchell, 1998):  
 
If f1,and f2 are PAC learnable from noisy 
           labeled data, and X1, X2 are 
           conditionally independent given Y, 
 
Then  f1, f2 are PAC learnable from  
          polynomial unlabeled data plus a  
          weak initial predictor 
 

x: 

y: person 

 



x: 

y: person 

 

[Blum & Mitchell; 98] 
[Dasgupta et al; 01 ] 
[Balcan & Blum; 08] 
[Ganchev et al., 08] 
[Sridharan & Kakade, 08] 
[Wang & Zhou, ICML10] 

Type 1 Coupling: Co-Training, Multi-View Learning 



x: 

y: person 

 

[Blum & Mitchell; 98] 
[Dasgupta et al; 01 ] 
[Balcan & Blum; 08] 
[Ganchev et al., 08] 
[Sridharan & Kakade, 08] 
[Wang & Zhou, ICML10] 

sample complexity drops exponentially 
in the number of views of X 

Type 1 Coupling: Co-Training, Multi-View Learning 



team 

person 
athlete 

coach 
sport 

NP 
 

subset/superset 
athlete(NP) à person(NP) 

            mutual exclusion 
athlete(NP) à NOT sport(NP) 
sport(NP) à NOT athlete(NP) 

Type 2 Coupling: Multi-task, Structured Outputs 
[Daume, 2008] 
[Bakhir et al., eds. 2007] 
[Roth et al., 2008] 
[Taskar et al., 2009] 
[Carlson et al., 2009] 
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Multi-view, Multi-Task Coupling 



coachesTeam(c,t) playsForTeam(a,t) teamPlaysSport(t,s) 

playsSport(a,s) 

NP1 NP2 

Type 3 Coupling: Relations and Argument Types 
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Type 3 Coupling: Relations and Argument Types 
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Type 3 Coupling: Relations and Argument Types 



            argument type consistency 
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over 4000 coupled functions in NELL 

Type 3 Coupling: Relations and Argument Types 

NP11 NP21 

subset/superset 
            mutual exclusion 

multi-view consistency 



How to train 

approximation to EM: 
•  E step: predict beliefs from unlabeled data (ie., the KB) 
•  M step: retrain 
 
NELL approximation: 
•  bound number of new beliefs per iteration, per predicate 
•  rely on multiple iterations for information to propagate, 

partly through joint assignment, partly through training 
examples 

 
Better approximation: 
•  Joint assignments based on probabilistic soft logic  
    [Pujara, et al., 2013] [Platanios et al., 2017] 
 



If coupled learning is the key, 
how can we get new coupling constraints? 



If:  x1 competes 
with 

(x1,x2) 
x2 economic 

sector 
(x2, x3) 

x3 

Then:  economic sector (x1, x3)   with probability 0.9 

PRA:  [Lao, Mitchell, Cohen, EMNLP 2011] Key Idea 2: Learn inference rules 
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Learned Rules are New Coupling Constraints! 

 0.93  playsSport(?x,?y) ß playsForTeam(?x,?z), teamPlaysSport(?z,?y) 



•  Learning X makes one a better learner of Y 
•  Learning Y makes one a better learner of X 

   X = reading functions: text à beliefs
   Y = Horn clause rules: beliefs à beliefs

Learned Rules are New Coupling Constraints! 



Consistency and Correctness 

what is the relationship? 
under what conditions? 

 



The core problem: 
•  Unsupervised agents can measure their internal 

consistency, but not their correctness 
 
Challenge: 
•  Under what conditions does consistency à correctness? 



Problem setting:  
•  have N different estimates               of target function 
 

[Platanios, Blum, Mitchell] 

= NELL category “city” 

= noun phrase 

= classifier based on ith     
   view of  



Problem setting:  
•  have N different estimates               of target function 
 

= disease 

= medical patient 

= ith diagnostic test 

[Hui & Walter, 1980; Collins & Huynh, 2014] 



Problem setting:  
•  have N different estimates               of target function 
 
 
Goal: 
•  estimate accuracy of each of                from unlabeled data  

[Platanios, Blum, Mitchell] 



Problem setting:  
•  have N different estimates               of target function 

•  agreement between fi, fj  : 

[Platanios, Blum, Mitchell] 



Problem setting:  
•  have N different estimates               of target function 

•  agreement between fi, fj  : 
 
Key insight: errors and agreement rates are related 
                    agreement can be estimated from unlabeled data 

Pr[neither makes error] + Pr[both make error] 

prob. fi and fi 
 agree 

prob. fi 
 error 

prob. fj 
error 

prob.  fi and fj 
simultaneous error 



Estimating Error from Unlabeled Data 

1.  IF f1 , f2 ,  f3 make independent errors, and accuracies > 0.5 
     then 
     becomes 
 
 
Determine errors from unlabeled data! 
 - use unlabeled data to estimate a12, a13, a23 

 - solve three equations for three unknowns e1, e2, e3 

 
   



Estimating Error from Unlabeled Data 

1.  IF f1 , f2 ,  f3 make indep. errors, accuracies > 0.5 
     then 
     becomes  
 
2. but if errors not independent 
     



Estimating Error from Unlabeled Data 

1.  IF f1 , f2 ,  f3 make indep. errors, accuracies > 0.5 
     then 
     becomes  
 
2. but if errors not independent, add prior:  
             the more independent, the more probable 
      

 
 
 
 
 
 
 



True error (red), estimated error (blue) 
NELL classifiers: 

[Platanios et al., 2014] 



Given functions fi: Xi à {0,1} that 
–  make independent errors 
–  are better than chance 
 

Multiview setting 

Is accuracy estimation strictly harder than learning? 

If you have at least 2 such functions  
–  they can be PAC learned by training them to agree 

over unlabeled data [Blum & Mitchell, 1998] 

If you have at least 3 such functions  
–  their accuracy can be calculated from agreement rates 

over unlabeled data [Platanios et al., 2014] 

 
 
 
 



thank you! 
 
 
 
 
 
follow NELL on Twitter:  @CMUNELL 
browse/download NELL’s KB at http://rtw.ml.cmu.edu 
 
 


