Never Ending Language Learning

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

Thesis:

We will never really understand learning until we build machines that

- learn many different things,
- from years of diverse experience,
- in a staged, curricular fashion,
- and become better <u>learners</u> over time.

NELL: Never-Ending Language Learner

The task:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate the ontology
 - 2. learn to read (perform #1) better than yesterday

Inputs:

- initial ontology (categories and relations)
- dozen examples of each ontology predicate
- the web
- occasional interaction with human trainers

NELL today

Running 24x7, since January, 12, 2010

Result:

- KB with ~120 million confidence-weighted beliefs
- learning to read
- learning to reason
- extending ontology

Improving Over Time Never Ending Language Learner

Semi-Supervised Bootstrap Learning

Key Idea 1: Coupled semi-supervised training: multi-view and multi-task

hard

(underconstrained) semi-supervised learning

Key Idea 1: Coupled semi-supervised training: multi-view and multi-task

noun phrase noun phrase text context morphology "___ is my son" ends in '...ski'

noun phrase URL specific appears in list2 at URL35401

hard (underconstrained) semi-supervised learning

much easier (more constrained) semi-supervised learning

Supervised training of 1 function:

Coupled training of 2 functions:

+

$$\langle x,y
angle \in labeled \ data \ ert f_1(x| heta_1)-yert$$
 $\langle x,y
angle \in labeled \ data \ ert f_2(x| heta_2)-yert$
 $\langle x,y
angle \in labeled \ data$

+
$$\sum_{x \in unlabeled \ data} |f_1(x|\theta_1) - f_2(x|\theta_2)|$$

walked in contains "univ."?

NELL Learned Contexts for "Hotel" (~1% of total)

"_ is the only five-star hotel" "_ is the only hotel" "_ is the perfect accommodation" "_ is the perfect address" "_ is the perfect lodging" "_ is the sister hotel" " is the ultimate hotel" " is the value choice" " is uniquely situated in" "_ is Walking Distance" "_ is wonderfully situated in" "_ las vegas hotel" "_ los angeles hotels" "_ Make an online hotel reservation" "_ makes a great home-base" "_ mentions Downtown" "_ mette a disposizione" "_ miami south beach" "_ minded traveler" "_ mucha prague Map Hotel" " n'est qu'quelques minutes" "_ naturally has a pool" "_ is the perfect central location" "_ is the perfect extended stay hotel" "_ is the perfect headquarters" "_ is the perfect home base" " is the perfect lodging choice" " north reddington beach" "__ now offer guests" "__ now offers guests" "__ occupies a privileged location" "_ occupies an ideal location" "_ offer a king bed" "_ offer a large bedroom" "_ offer a master bedroom" "_ offer a refrigerator" "_ offer a separate living area" _____ offer a separate living room" ___ offer comfortable rooms" "___ offer complimentary shuttle service" " offer deluxe accommodations" " offer family rooms" " offer secure online reservations" " offer upscale amenities" "_ offering a complimentary continental breakfast" "_ offering comfortable rooms" "_ offering convenient access" "_ offering great lodging" "_ offering luxury accommodation" "_ offering world class facilities" "_ offers a business center" "_ offers a business centre" "_ offers a casual elegance" "_ offers a central location" " surrounds travelers" ...

NELL Highest Weighted* string fragments: "Hotel"

1.82307 SUFFIX=tel 1.81727 SUFFIX=otel 1.43756 LAST WORD=inn 1.12796 PREFIX=in 1.12714 PREFIX=hote 1.08925 PRFFIX=hot 1.06683 SUFFIX=odge 1.04524 SUFFIX=uites 1.04476 FIRST_WORD=hilton 1.04229 PREFIX=resor 1.02291 SUFFIX=ort 1.00765 FIRST WORD=the 0.97019 SUFFIX=ites 0.95585 FIRST WORD=le 0.95574 PRFFIX=marr 0.95354 PREFIX=marri 0.93224 PREFIX=hyat 0.92353 SUFFIX=yatt 0.88297 SUFFIX=riott 0.88023 PRFFIX=west 0.87944 SUFFIX=iott

* logistic regression

Type 1 Coupling: Co-Training, Multi-View Learning

Theorem (Blum & Mitchell, 1998):

If f_1 , and f_2 are PAC learnable from noisy <u>*labeled*</u> data, and X_1 , X_2 are conditionally independent given Y,

Then f₁, f₂ are PAC learnable from polynomial <u>unlabeled</u> data plus a weak initial predictor

Type 1 Coupling: Co-Training, Multi-View Learning

[Blum & Mitchell; 98]

[Dasgupta et al; 01] [Balcan & Blum; 08] [Ganchev et al., 08] [Sridharan & Kakade, 08] y: person [Wang & Zhou, ICML10] $f_1(x \mid \theta_1)$ $f_3(x \mid \theta_3)$ $f_2(x \mid \theta_2)$ NP NP HTML NP context **X**: morphology contexts distribution www.celebrities.com: is a friend capitalized? rang the ends with '...ski'? walked in contains "univ."?

Type 1 Coupling: Co-Training, Multi-View Learning

sample complexity drops exponentially in the number of views of X

y: person $f_1(x \mid \theta_1)$ $f_3(x \mid \theta_3)$ $f_2(x \mid \theta_2)$ NP NP HTML NP context **X**: morphology contexts distribution www.celebrities.com: is a friend capitalized? rang the ____ ends with '...ski'? walked in contains "univ."?

[Blum & Mitchell; 98] [Dasgupta et al; 01] [Balcan & Blum; 08] [Ganchev et al., 08] [Sridharan & Kakade, 08] [Wang & Zhou, ICML10]

Type 2 Coupling: Multi-task, Structured Outputs

[Daume, 2008]

Multi-view, Multi-Task Coupling

playsSport(NP1,NP2) → athlete(NP1), sport(NP2)

over 4000 coupled functions in NELL

How to train

approximation to EM:

- E step: predict beliefs from unlabeled data (ie., the KB)
- M step: retrain

NELL approximation:

- bound number of new beliefs per iteration, per predicate
- rely on multiple iterations for information to propagate, partly through joint assignment, partly through training examples

Better approximation:

 Joint assignments based on probabilistic soft logic [Pujara, et al., 2013] [Platanios et al., 2017] If coupled learning is the key, how can we get new coupling constraints?

Key Idea 2: Learn inference rules

PRA: [Lao, Mitchell, Cohen, EMNLP 2011]

Key Idea 2: Learn inference rules

PRA: [Lao, Mitchell, Cohen, EMNLP 2011]

Learned Rules are New Coupling Constraints!

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)

Learned Rules are New Coupling Constraints!

- Learning X makes one a better <u>learner</u> of Y
- Learning Y makes one a better learner of X

X = reading functions: text \rightarrow beliefs Y = Horn clause rules: beliefs \rightarrow beliefs **Consistency and Correctness**

what is the relationship? under what conditions?

The core problem:

• Unsupervised agents can measure their internal consistency, but not their correctness

Challenge:

• Under what conditions does *consistency* \rightarrow *correctness*?

• have N different estimates $f_1, \ldots f_N$ of target function f^*

$$\mathcal{Y}$$
 = NELL category "city"

 $y = f^*(x); y \in \{0, 1\}$

 f_i = classifier based on ith view of x

 \mathcal{X} = noun phrase

• have N different estimates $f_1, \ldots f_N$ of target function f^*

$$\mathcal{Y}$$
 = disease
 f_i = ith diagnostic test
 \mathcal{X} = medical patient

[Hui & Walter, 1980; Collins & Huynh, 2014]

• have N different estimates $f_1, \ldots f_N$ of target function f^* $f^* : X \to Y; Y \in \{0, 1\}$

Goal:

• estimate accuracy of each of $f_1, \ldots f_N$ from **unlabeled** data

 $f^*: X \to Y; Y \in \{0, 1\}$

Problem setting:

- have N different estimates $f_1, \ldots f_N$ of target function f^*
- agreement between $f_i, f_j : a_{ij} \equiv P_x(f_i(x) = f_j(x))$

- have N different estimates $f_1, \ldots f_N$ of target function f^*
- agreement between $f_i, f_j : a_{ij} \equiv P_x(f_i(x) = f_j(x))$

Key insight: errors and agreement rates are related agreement can be estimated from unlabeled data

 $f^*: X \to Y; Y \in \{0, 1\}$

$$a_{ij} = \Pr[\text{neither makes error}] + \Pr[\text{both make error}]$$

$$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

$$f_i = 1 - e_i - e_j + 2e_{ij}$$

Estimating Error from Unlabeled Data

1. IF f_1 , f_2 , f_3 make independent errors, and accuracies > 0.5 then $a_{ij} = 1 - e_i - e_j + 2e_{ij}$ becomes $a_{ij} = 1 - e_i - e_j + 2e_ie_j$

Determine errors from unlabeled data!

- use unlabeled data to estimate a_{12} , a_{13} , a_{23}
- solve three equations for three unknowns e_1 , e_2 , e_3

Estimating Error from Unlabeled Data

- 1. IF f_1 , f_2 , f_3 make indep. errors, accuracies > 0.5 then $a_{ij} = 1 - e_i - e_j + 2e_{ij}$ becomes $a_{ij} = 1 - e_i - e_j + 2e_ie_j$
- 2. but if errors not independent

Estimating Error from Unlabeled Data

- 1. IF f_1 , f_2 , f_3 make indep. errors, accuracies > 0.5 then $a_{ij} = 1 - e_i - e_j + 2e_{ij}$ becomes $a_{ij} = 1 - e_i - e_j + 2e_ie_j$
- 2. but if errors **not** independent, add prior: the more independent, the more probable

min
$$\sum_{i,j} (e_{ij} - e_i e_j)^2$$

such that
$$(\forall i, j) \ a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

True error (red), estimated error (blue)

[Platanios et al., 2014]

Multiview setting

Given functions $f_i: X_i \rightarrow \{0,1\}$ that

- make independent errors
- are better than chance

If you have at least 2 such functions

 they can be <u>PAC learned</u> by training them to agree over unlabeled data [Blum & Mitchell, 1998]

If you have at least 3 such functions

 their <u>accuracy</u> can be calculated from agreement rates over unlabeled data [Platanios et al., 2014]

Is accuracy estimation strictly harder than learning?

thank you!

follow NELL on Twitter: @CMUNELL browse/download NELL's KB at <u>http://rtw.ml.cmu.edu</u>