Thesis:

We will never really understand learning until we build machines that
• learn many different things,
• from years of diverse experience,
• in a staged, curricular fashion,
• and become better learners over time.
NELL: Never-Ending Language Learner

The task:
- run 24x7, forever
- each day:
 1. extract more facts from the web to populate the ontology
 2. learn to read (perform #1) better than yesterday

Inputs:
- initial ontology (categories and relations)
- dozen examples of each ontology predicate
- the web
- occasional interaction with human trainers
NELL today

Running 24x7, since January, 12, 2010

Result:
• KB with ~120 million confidence-weighted beliefs
• learning to read
• learning to reason
• extending ontology
Improving Over Time
Never Ending Language Learner

[Mitchell et al., CACM 2017]
Semi-Supervised Bootstrap Learning

Learn which noun phrases are cities:

Paris
Pittsburgh
Seattle
Montpelier

San Francisco
Berlin
denial

anxiety
selfishness
London

mayor of arg1
live in arg1

arg1 is home of traits such as arg1

it's underconstrained!!
Key Idea 1: Coupled semi-supervised training: multi-view and multi-task

Y: person

\(f: X \rightarrow Y \)

X: noun phrase

Underconstrained semi-supervised learning
Key Idea 1: Coupled semi-supervised training: multi-view and multi-task

![Diagram showing relationships between nodes labeled as 'Y: person', 'X: noun phrase', 'f: X → Y', 'team', 'athlete', 'person', 'sport', 'coach', 'noun phrase text context', 'noun phrase morphology', 'noun phrase URL specific', 'ends in ‘…ski’', 'appears in list2 at URL35401']

- **hard** (underconstrained) semi-supervised learning
- **much easier** (more constrained) semi-supervised learning
Supervised training of 1 function:

\[\theta_1 = \arg \min_{\theta_1} \sum_{(x,y) \in \text{labeled data}} |f_1(x|\theta_1) - y| \]
Coupled training of 2 functions:

\[\theta_1, \theta_2 = \arg\min_{\theta_1, \theta_2} \sum_{(x,y) \in \text{labeled data}} |f_1(x|\theta_1) - y| + \sum_{(x,y) \in \text{labeled data}} |f_2(x|\theta_2) - y| + \sum_{x \in \text{unlabeled data}} |f_1(x|\theta_1) - f_2(x|\theta_2)| \]

\[x: \quad \text{NP context distribution} \quad \text{NP morphology} \]

\[y: \quad \text{person} \]

—is a friend
ranged the__
..._ended with ‘...ski’?
__walked in
contains “univ.”?
NELL Learned Contexts for “Hotel” (~1% of total)

"_ is the only five-star hotel" "_ is the only hotel" "_ is the perfect accommodation" "_ is the perfect address" "_ is the perfect lodging" "_ is the sister hotel" "_ is the ultimate hotel" "_ is the value choice" "_ is uniquely situated in" "_ is Walking Distance" "_ is wonderfully situated in" "_ las vegas hotel" "_ los angeles hotels" "_ Make an online hotel reservation" "_ makes a great home-base" "_ mentions Downtown" "_ mette a disposizione" "_ miami south beach" "_ minded traveler" "_ mucha prague Map Hotel" "_ n'est qu' quelques minutes" "_ naturally has a pool" "_ is the perfect central location" "_ is the perfect extended stay hotel" "_ is the perfect headquarters" "_ is the perfect home base" "_ is the perfect lodging choice" "_ north reddington beach" "_ now offer guests" "_ now offers guests" "_ occupies a privileged location" "_ occupies an ideal location" "_ offer a king bed" "_ offer a large bedroom" "_ offer a master bedroom" "_ offer a refrigerator" "_ offer a separate living area" "_ offer a separate living room" "_ offer comfortable rooms" "_ offer complimentary shuttle service" "_ offer deluxe accommodations" "_ offer family rooms" "_ offer secure online reservations" "_ offer upscale amenities" "_ offering a complimentary continental breakfast" "_ offering comfortable rooms" "_ offering convenient access" "_ offering great lodging" "_ offering luxury accommodation" "_ offering world class facilities" "_ offers a business center" "_ offers a business centre" "_ offers a casual elegance" "_ offers a central location" "_ surrounds travelers" …
NELL Highest Weighted* string fragments: “Hotel”

1.82307 SUFFIX=tel
1.81727 SUFFIX=otel
1.43756 LASTWORD=inn
1.12796 PREFIX=in
1.12714 PREFIX=hote
1.08925 PREFIX=hot
1.06683 SUFFIX=odges
1.04524 SUFFIX=uites
1.04476 FIRSTWORD=hilton
1.04229 PREFIX=resor
1.02291 SUFFIX=ort
1.00765 FIRSTWORD=the
0.97019 SUFFIX=ites
0.95585 FIRSTWORD=le
0.95574 PREFIX=marr
0.95354 PREFIX=marri
0.93224 PREFIX=hyat
0.92353 SUFFIX=yatt
0.88297 SUFFIX=riott
0.88023 PREFIX=west
0.87944 SUFFIX=iott

* logistic regression
Type 1 Coupling: Co-Training, Multi-View Learning

Theorem (Blum & Mitchell, 1998):
If f_1, and f_2 are PAC learnable from noisy labeled data, and X_1, X_2 are conditionally independent given Y,
Then f_1, f_2 are PAC learnable from polynomial unlabeled data plus a weak initial predictor.

__ is a friend
rang the __
...__ walked in

capitalized?
ends with ‘...ski’?
...contains “univ.”?
Type 1 Coupling: Co-Training, Multi-View Learning

[Blum & Mitchell; 98]
[Dasgupta et al; 01]
[Balcan & Blum; 08]
[Ganchev et al., 08]
[Sridharan & Kakade, 08]
[Wang & Zhou, ICML10]
Type 1 Coupling: Co-Training, Multi-View Learning

Sample complexity drops exponentially in the number of views of X

[Blum & Mitchell; 98]
[Dasgupta et al; 01]
[Balcan & Blum; 08]
[Ganchev et al., 08]
[Sridharan & Kakade, 08]
[Wang & Zhou, ICML10]
Type 2 Coupling: Multi-task, Structured Outputs

[Daume, 2008]
[Bakhir et al., eds. 2007]
[Roth et al., 2008]
[Taskar et al., 2009]
[Carlson et al., 2009]
Multi-view, Multi-Task Coupling

NP:
- NP text
- context
- distribution
- NP morphology
- NP HTML contexts
Type 3 Coupling: Relations and Argument Types
Type 3 Coupling: Relations and Argument Types
Type 3 Coupling: Relations and Argument Types

playsSport(NP1, NP2) → athlete(NP1), sport(NP2)
Type 3 Coupling: Relations and Argument Types

Over 4000 coupled functions in NELL

- Multi-view consistency
- Argument type consistency
- Subset/superset
- Mutual exclusion
How to train

approximation to EM:
• E step: predict beliefs from unlabeled data (ie., the KB)
• M step: retrain

NELL approximation:
• bound number of new beliefs per iteration, per predicate
• rely on multiple iterations for information to propagate, partly through joint assignment, partly through training examples

Better approximation:
• Joint assignments based on probabilistic soft logic
 [Pujara, et al., 2013] [Platanios et al., 2017]
If coupled learning is the key, how can we get new coupling constraints?
Key Idea 2: Learn inference rules

If: x_1 competes with (x_1, x_2)
Then: economic sector (x_1, x_3) with probability 0.9

PRA: [Lao, Mitchell, Cohen, *EMNLP* 2011]
If: \(x_1 \) competes with \((x_1, x_2)\) \(x_2 \) economic sector \((x_2, x_3)\)

Then: economic sector \((x_1, x_3)\) with probability 0.9

Key Idea 2: Learn inference rules

PRA: [Lao, Mitchell, Cohen, EMNLP 2011]
Learned Rules are New Coupling Constraints!

0.93 \(\text{playsSport}(?x,?y) \leftarrow \text{playsForTeam}(?x,?z), \text{teamPlaysSport}(?z,?y) \)
Learned Rules are New Coupling Constraints!

- Learning X makes one a better learner of Y
- Learning Y makes one a better learner of X

X = reading functions: text → beliefs
Y = Horn clause rules: beliefs → beliefs
Consistency and Correctness

what is the relationship?
under what conditions?
The core problem:
• Unsupervised agents can measure their internal consistency, but not their correctness

Challenge:
• Under what conditions does consistency \rightarrow correctness?
Problem setting:
• have N different estimates f_1, \ldots, f_N of target function f^*

$$y = f^*(x); \ y \in \{0, 1\}$$

y = NELL category “city”

f_i = classifier based on i^{th} view of x

x = noun phrase
Problem setting:
- have \(N \) different estimates \(f_1, \ldots, f_N \) of target function \(f^* \)

\[
\begin{align*}
 y & = \text{disease} \\
 f_i & = \text{\(i^{th} \) diagnostic test} \\
 x & = \text{medical patient}
\end{align*}
\]

[Hui & Walter, 1980; Collins & Huynh, 2014]
Problem setting:
• have N different estimates f_1, \ldots, f_N of target function f^*

$$f^* : X \rightarrow Y; \ Y \in \{0, 1\}$$

Goal:
• estimate accuracy of each of f_1, \ldots, f_N from unlabeled data
Problem setting:

- have N different estimates f_1, \ldots, f_N of target function f^*
 \[f^* : X \rightarrow Y; \quad Y \in \{0, 1\} \]

- agreement between f_i, f_j: $a_{ij} \equiv P_x(f_i(x) = f_j(x))$
Problem setting:
- have \(N \) different estimates \(f_1, \ldots, f_N \) of target function \(f^* \)
 \[
 f^* : X \to Y; \quad Y \in \{0, 1\}
 \]
- \textit{agreement} between \(f_i, f_j \) :
 \[
 a_{ij} \equiv P_x(f_i(x) = f_j(x))
 \]

Key insight: errors and agreement rates are related
agreement can be estimated from unlabeled data

\[
a_{ij} = \Pr[\text{neither makes error}] + \Pr[\text{both make error}]
\]

\[
a_{ij} = 1 - e_i - e_j + 2e_{ij}
\]

- prob. \(f_i \) and \(f_i \) agree
- prob. \(f_i \) error
- prob. \(f_j \) error
- prob. \(f_i \) and \(f_j \) simultaneous error
Estimating Error from Unlabeled Data

1. IF \(f_1, f_2, f_3 \) make independent errors, and accuracies > 0.5 then

\[
 a_{ij} = 1 - e_i - e_j + 2e_{ij}
\]

becomes

\[
 a_{ij} = 1 - e_i - e_j + 2e_i e_j
\]

Determine errors from unlabeled data!
- use unlabeled data to estimate \(a_{12}, a_{13}, a_{23} \)
- solve three equations for three unknowns \(e_1, e_2, e_3 \)
Estimating Error from Unlabeled Data

1. IF f_1, f_2, f_3 make indep. errors, accuracies > 0.5
 then $a_{ij} = 1 - e_i - e_j + 2e_{ij}$
 becomes $a_{ij} = 1 - e_i - e_j + 2e_i e_j$

2. but if errors not independent
Estimating Error from Unlabeled Data

1. IF f_1, f_2, f_3 make indep. errors, accuracies > 0.5
 then
 $$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$
 becomes
 $$a_{ij} = 1 - e_i - e_j + 2e_i e_j$$

2. but if errors not independent, add prior:
 the more independent, the more probable

 $$\min \sum_{i,j} (e_{ij} - e_i e_j)^2$$

 such that

 $$(\forall i, j) \ a_{ij} = 1 - e_i - e_j + 2e_{ij}$$
True error (red), estimated error (blue)

NELL classifiers:

[Platanios et al., 2014]
Given functions $f_i: X_i \rightarrow \{0,1\}$ that
- make independent errors
- are better than chance

If you have at least 2 such functions
- they can be PAC learned by training them to agree over unlabeled data [Blum & Mitchell, 1998]

If you have at least 3 such functions
- their accuracy can be calculated from agreement rates over unlabeled data [Platanios et al., 2014]

Is accuracy estimation strictly harder than learning?
thank you!

follow NELL on Twitter: @CMUNELL
browse/download NELL’s KB at http://rtw.ml.cmu.edu