Deep Learning for Broad Coverage Semantics: SRL, Coreference, and Beyond

Luke Zettlemoyer^{+*}

Joint work with **Luheng He**[†], **Kenton Lee**[†], **Matthew Peters***, Christopher Clark[†], Matthew Gardner*, Mohit Iyyer*, Mandar Joshi[†], Mike Lewis[‡], Julian Michael[†], Mark Neumann*

+ Paul G. Allen School of Computer Science & Engineering, University of Washington,
 + Facebook AI Research
 * Allen Institute for Artificial Intelligence

Step 1:

Step 2:

Step 1: Gather lots of training data!

Step 2:

Step 1: Gather lots of training data!

Step 2:

Step 1: Gather lots of training data!

Step 2: Apply Deep Learning!!

Step 1: Gather lots of training data!

Step 2: Apply Deep Learning!!

Step 1: Gather lots of training data!

Step 2: Apply Deep Learning!!

Broad Coverage Semantics

Example Tasks:

Coreference: clustering NPs

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building.

Semantic Role Labeling: who did what, etc.

ARG0	NASA
PRED	<u>observe</u>
ARGI	an X-ray flare 400 times brighter than usual
TMP	On January 5, 2015

Many applications:

Question Answering

Information Extraction

Machine Translation

Does the Recipe Work for Broad Coverage Semantics?

Step 1: Gather lots of training data!

Step 2: Apply Deep Learning!!

Does the Recipe Work for Broad Coverage Semantics?

Step 1: Gather lots of training data!

Challenge 1: Data is costly and limited (e.g. linguists required to label PennTreebank / OntoNotes)

Step 2: Apply Deep Learning!!

Does the Recipe Work for Broad Coverage Semantics?

Step 1: Gather lots of training data!

Challenge 1: Data is costly and limited (e.g. linguists required to label PennTreebank / OntoNotes)

Step 2: Apply Deep Learning!!

Challenge 2: Pipeline of structured prediction problems with cascading errors (e.g. POS->Parsing->SRL->Coref)

New Learning Approaches

New state-of-the-art results for two tasks:

Coreference:

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building.

Semantic Role Labeling:

ARG0	NASA
PRED	<u>observe</u>
ARGI	an X-ray flare 400 times brighter than usual
TMP	On January 5, 2015

Common themes:

- End-to-end training of deep neural networks
- No preprocessing (e.g., no POS, no parser, etc.)
- Large gains in accuracy with simpler models and no extra training data

The robot *broke* my favorite mug with a wrench.

My mug *broke* into pieces immediately.

SRL is a hard problem ...

- Over 10 years, F1 on PropBank:
 80.3 (Toutanova et al, 2005) 80.3 (FitzGerald et al, 2015)
- Many interesting challenges: Syntactic alternation Prepositional phrase attachment Long-range dependencies and common sense

SRL Systems

Punyakanok et al., 2008 Täckström et al., 2015 FitzGerald et al., 2015

Punyakanok et al., 2008 Täckström et al., 2015 FitzGerald et al., 2015 Collobert et al., 2011 Zhou and Xu, 2015 Wang et. al, 2015

SRL as BIO Tagging Problem

Input (sentence and predicate):

SRL as BIO Tagging Problem

SRL as BIO Tagging Problem

[He et al, 2017]

Other Implementation Details ...

- 8 layer BiLSTMs with 300D hidden layers.
- 100D GloVe embeddings, updated during training.
- Orthonormal initialization for LSTM weight matrices (Saxe et al., 2013)
- 5 model ensemble with **product-of-experts** (Hinton 2002)
- Trained for 500 epochs.

CoNLL 2005 Results

CoNLL 2012 (OntoNotes) Results

Ablations

		WSJ Test		Brown	(out-domain)) Test *:	Ensemble r	nodels
	90							
	85							
	80							
Ļ- Ш	75							
	70							
	65							
	60	Ours*	Ours	Zhou	FitzGerald*	Täckström	Toutanova*	Punyakanok*
		2017	2017	2015	2015	2015	2008	2008

CoNLL 2005 Results

CoNLL 2012 (OntoNotes) Results

Ablations

CoNLL 2005 Results

CoNLL 2012 (OntoNotes) Results

Ablations

Ablations on Number of Layers (2,4,6 and 8)

Ablations on Number of Layers (2,4,6 and 8)

Ablations on Number of Layers (2,4,6 and 8)

Ablations on Number of Layers (2,4,6 and 8)

New Learning Approaches

New state-of-the-art results for two tasks:

Coreference:

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building.

Semantic Role Labeling:

ARG0	NASA	
PRED	<u>observe</u>	
ARGI	an X-ray flare 400 times brighter than usual	
TMP	On January 5, 2015	

Common themes:

- End-to-end training of deep neural networks
- No preprocessing (e.g., no POS, no parser, etc.)
- Large gains in accuracy with simpler models and no extra training data

Input document

A fire in a Bangladeshi garment factory has left at least

37 people dead and 100 hospitalized. Most of the

deceased were killed in the crush as workers tried to

Input document

A fire in a Bangladeshi garment factory has left at least

37 people dead and 100 hospitalized. Most of the

deceased were killed in the crush as workers tried to

Cluster #I	A fire in a Bangladeshi garment factory	the blaze in the four-story building
------------	---	--------------------------------------

Input document

A fire in a Bangladeshi garment factory has left at least

37 people dead and 100 hospitalized. Most of the

deceased were killed in the crush as workers tried to

Cluster #I	A fire in a Bangladeshi garment factory	the blaze in the four-story building
Cluster #2 a Bangladeshi garment factory		the four-story building

Input document

A fire in a Bangladeshi garment factory has left at least

37 people dead and 100 hospitalized. Most of the

deceased were killed in the crush as workers tried to

Cluster #I A fire in a Bangladeshi garment factory		the blaze in the four-story building
Cluster #2 a Bangladeshi garment factory		the four-story building
Cluster #3	at least 37 people	the deceased

Two Subproblems

Previous Approach: Rule-based pipeline

Previous Approach: Rule-based pipeline

Previous Approach: Rule-based pipeline

End-to-end Approach

- Consider all possible spans
- Learn to rank antecedent spans
- Factored model to prune search space

the Postal Service

Postal

said

the

General

Electric

Service contacted the company

Mention Ranking

Every span independently chooses an antecedent

Input document A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building. Witnesses say the only exit door was on the ground floor, and that it was locked when the fire broke out.

Mention Ranking

- Reason over all possible spans
- Assign an antecedent to every span

$$y_3 \in \{\epsilon, 1, 2\}$$

	Span	Antecedent
I	А	y_1
2	A fire	y_2
3	A fire in	y_3
		•••
Μ	out	y_M

Input document

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building. Witnesses say the only exit door was on the ground floor, and that it was locked when the fire broke out.

Span	Antecedent (y_i)
A	ϵ
A fire	ϵ
a Bangladeshi garment factory	ϵ
	•••
the four-story building	a Bangladeshi garment factory
	•••
out	ϵ

Input document

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the

deceased were killed in the crush as workers tried to flee the blaze in the four-story building. Witnesses

Not a mention

d floor, and that it was locked when the fire broke out.

Span	Antecedent (y_i)
A	ϵ
A fire	ϵ
	•••
a Bangladeshi garment factory	ϵ
•••	•••
the four-story building	a Bangladeshi garment factory
•••	
out	ϵ

Input document

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building. Witnesses say the only exit door was on the ground floor, and that it was locked when the fire broke out.

	Span	Antecedent (y_i)
No link with previously occurring span		
	a Bangladeshi garment factory	ϵ
	•••	
	the four-story building	a Bangladeshi garment factory
	•••	•••
	out	ϵ

Input document

A fire in a Bangladeshi garment factory has left at least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building. Witnesses say the only exit door was on the ground floor, and that it was locked when the fire broke out.

	Span	Antecedent (y_i)
	Α	ϵ
	A fire	ϵ
Predicted coreference link		
		ϵ
	•••	···
	the four-story building	a Bangladeshi garment factory
	•••	
	out	ϵ

Span Ranking Model

$$P(y_1, \dots, y_M \mid D) = \prod_{i=1}^M P(y_i \mid D)$$
$$= \prod_{i=1}^M \frac{e^{s(i, y_i)}}{\sum_{y' \in \mathcal{Y}(i)} e^{s(i, y')}}$$

Factor coreference score s(i,j) to enable span pruning:

$$s(i,j) = \begin{cases} s_{\rm m}(i) + s_{\rm m}(j) + s_{\rm a}(i,j) & j \neq \epsilon \\ 0 & j = \epsilon \end{cases}$$

Span Ranking Model $P(y_1, \dots, y_M \mid D) = \prod_{i=1}^M P(y_i \mid D)$ $M = \frac{e^{s(i,y_i)}}{e^{s(i,y_i)}}$ Is this span a mention?

Factor coreference score s(i,j) to enable span pruning:

$$s(i,j) = \begin{cases} s_{\rm m}(i) + s_{\rm m}(j) + s_{\rm a}(i,j) & j \neq \epsilon \\ 0 & j = \epsilon \end{cases}$$

Span Ranking Model

$$P(y_1, \dots, y_M \mid D) = \prod_{i=1}^M P(y_i \mid D)$$

=
$$\prod_{i=1}^M \frac{e^{s(i,y_i)}}{p(i,j)}$$

Is span j an antecedent of span i?
Factor coreference score $s(i, j)$ to enable span pruning:
$$s(i, j) = \begin{cases} s_{\rm m}(i) + s_{\rm m}(j) + s_{\rm a}(i, j) & j \neq \epsilon \\ 0 & j = \epsilon \end{cases}$$

Span Ranking Model

$$P(y_1, \dots, y_M \mid D) = \prod_{i=1}^M P(y_i \mid D)$$
$$= \prod_{i=1}^M \frac{e^{s(i, y_i)}}{\sum_{y' \in \mathcal{Y}(i)} e^{s(i, y')}}$$

Factor coreference score s(i,j) to enable span pruning:

$$s(i,j) = \begin{cases} s_{\rm m}(i) + s_{\rm m}(j) + s_{\rm a}(i,j) & j \neq \epsilon \\ 0 & j = \epsilon \end{cases}$$

Dummy antecedent
has a fixed zero score

Experimental Setup

Dataset: English OntoNotes (CoNLL-2012)

Genres: Telephone conversations, newswire, newsgroups, broadcast conversation, broadcast news, weblogs

Documents: 2802 training, 343 development, 348 test

Longest document has 4009 words!

Aggressive pruning: Maximum span width, maximum sentence training, suppress spans with inconsistent bracketing, maximum number of antecedents

Features: distance between spans, span width

Metadata: speaker information, genre

Qualitative Analysis

: Head-finding attention weight

A fire in a Bangladeshi garment factory has left at

least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building.

Qualitative Analysis

A fire in a Bangladeshi garment factory has left at

least 37 people dead and 100 hospitalized. Most of the deceased were killed in the crush as workers tried to flee the blaze in the four-story building.

Qualitative Analysis

•

Hea Good head-finding requires word-order information!

A fire in a Bangladeshi garment factory has left at

least 37 people dead and 100 hospitalized. Most of

the deceased were killed in the crush as workers

Common Error Case

: Head-finding attention weight

The flight attendants have until 6:00 today to ratify labor concessions. The pilots union and ground crew did so yesterday.

Common Error Case

: Head-finding attention weight

The flight attendants have until 6:00 today to ratify labor concessions. The pilots union and ground crew did so yesterday. Conflating relatedness with paraphrasing

Does the Recipe Work for Broad Coverage Semantics?

Step 1: Gather lots of training data!

Challenge 1: Data is costly and limited (e.g. linguists required to label PennTreebank / OntoNotes)

Step 2: Apply Deep Learning!!

Challenge 2: Pipeline of structured prediction problems with cascading errors (e.g. POS->Parsing->SRL->Coref)

Step 3: Observe Impressive Gains!!!

Option 1: Semi-supervised learning

• E.g. word2vec and GloVe are in wide use [Mikolov et al., 2013; Pennington et al., 2014]

Option 1: Semi-supervised learning

- E.g. word2vec and GloVe are in wide use [Mikolov et al., 2013; Pennington et al., 2014]
- Can we learn better word representations?

Option 1: Semi-supervised learning

- E.g. word2vec and GloVe are in wide use [Mikolov et al., 2013; Pennington et al., 2014]
- Can we learn better word representations?

Option 2: Supervised learning

Option 1: Semi-supervised learning

- E.g. word2vec and GloVe are in wide use [Mikolov et al., 2013; Pennington et al., 2014]
- Can we learn better word representations?

Option 2: Supervised learning

• Can we gather more direct forms of supervision?

Learning Better Word Representations

Goal: Model contextualized syntax and semantics

$$R(w_i, w_1 \dots w_n) \in \mathbb{R}^n$$

R(plays, "The robot plays piano.") \neq R(plays, "The robot starred in many plays.")

Word Embeddings from a Language Model Step 1: Train a large BiLM on unlabeled data

Word Embeddings from a Language Model Step 1: Train a large BiLM on unlabeled data

Word Embeddings from a Language Model

Step 1: Train a large BiLM on unlabeled data
Step 2: Compute linear function of pre-trained model

Word Embeddings from a Language Model

Step 1: Train a large BiLM on unlabeled data
Step 2: Compute linear function of pre-trained model

Word Embeddings from a Language Model

Step 1: Train a large BiLM on unlabeled dataStep 2: Compute linear function of pre-trained modelStep 3: Learn weights for each end task

Best Single System Results

SOTA For Many Others Tasks

Semantics:

- Supervised WSD task [Miller et al., 1994]
- Use N-th layer in NN classifier

Semantics:

- Supervised WSD task [Miller et al.,1994]
- Use N-th layer in NN classifier

Semantics:

- Supervised WSD task [Miller et al., 1994]
- Use N-th layer in NN classifier

Syntax:

- Label POS corpus [Marcus et al., 1993]
- Learn classifier on N-th layer

Semantics:

- Supervised WSD task [Miller et al., 1994]
- Use N-th layer in NN classifier

Syntax:

- Label POS corpus [Marcus et al., 1993]
- Learn classifier on N-th layer

Option 1: Semi-supervised learning

- E.g. word2vec and GloVe are in wide use [Mikolov et al., 2013; Pennington et al., 2014]
 - Can we learn better word representations?

Option 2: Supervised learning

• Can we gather more direct forms of supervision?

A First Data Step: QA-SRL

- Introduce a new SRL formulation with no frame or role inventory
- Use question-answer pairs to model verbal predicate-argument relations
- Annotated over 3,000 sentences in weeks with non-expert, part-time annotators
- Showed that this data is high-quality and learnable

[He et al, 2015]

Previous Method: Annotation with Frames

The Proposition Bank: An Annotated Corpus of Semantic Roles, Palmer et al., 2005 http://verbs.colorado.edu/propbank/framesets-english/rise-v.html

Given sentence and a verb:

They *increased* the rent this year.

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:

Who increased something ?

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:

Step 2: Answer with words in the sentence:

Who increased something ?

They

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:

Who increased something ?

Step 3: Repeat, write as many QA pairs as possible ...

Step 2: Answer with words in the sentence:

Ihey

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:	Step 2: Answer with words in the sentence:
Who increased somethin	g? They
Step 3: Repeat, write as many QA pairs as possible	
What is increased ?	the rent
When is something increa	ased? this year

Our Method: Q/A Pairs for Semantic Relations

Wh-words vs. PropBank Roles

	Who	What	When	Where	Why	How	HowMuch
ARG0	1575	414	3	5	17	28	2
ARG1	285	2481	4	25	20	23	95
ARG2	85	364	2	49	17	51	74
ARG3	11	62	7	8	4	16	31
ARG4	2	30	5	11	2	4	30
ARG5	0	0	0	1	0	2	0
AM-ADV	5	44	9	2	25	27	6
AM-CAU	0	3	1	0	23	1	0
AM-DIR	0	6	1	13	0	4	0
AM-EXT	0	4	0	0	0	5	5
AM-LOC	1	35	10	89	0	13	11
AM-MNR	5	47	2	8	4	108	14
AM-PNC	2	21	0	1	39	7	2
AM-PRD	1	1	0	0	0	1	0
AM-TMP	2	51	341	2	11	20	10

Advantages	 Easily explained 			
	 No pre-defined roles, few syntactic assumption 			
	 Can capture implicit arguments 			
	 Generalizable across domains 			
Limitations	 Only modeling verbs (for now) 			
	 Not annotating verb senses directly 			
	 Can have multiple equivalent questions 			
Challenges	 What questions to ask? 			
	 How much data do we need? 			
	 Can we generalize to other tasks, such as coref? 			

Does the Recipe Work for Broad Coverage Semantics?

Step 1: Gather lots of training data!

Challenge 1: Data is costly and limited (e.g. linguists required to label PennTreebank / OntoNotes)

Step 2: Apply Deep Learning!!

Challenge 2: Pipeline of structured prediction problems with cascading errors (e.g. POS->Parsing->SRL->Coref)

Step 3: Observe Impressive Gains!!!

Contributions

Models

- End-to-end deep learning for SRL and coreference
- No preprocessing (e.g. no parser or POS tagger)

Data

- Contextualized word embeddings from a language model
- First steps towards scalable data annotation

The End: Questions?

Future Directions

- Multi-task learning, given architectural similarities
- Multi-lingual should work, in theory...
- Need to scale up data annotation efforts, and focus on out of domain performance

Recent Release

- AllenNLP: Deep Learning Semantic NLP toolkit
- See demos and code at <u>AllenNLP.org</u>

