Enforcing Output Constraints via SGD:
A Step Towards Neural Lagrangian Relaxation

Jay Yoon Lee * Michael Wick f Jean-Baptiste Tristan f Jaime Carbonell *

Abstract

Structured prediction problems such as named entity recognition and parsing are
crucial for automated knowledge base construction. Increasingly, researchers
are exploring ways of improving them with neural networks. However, many
structured-prediction problems require deterministic constraints on the output
values; for example, requiring that the sequential outputs encode a valid tree. While
hidden units might capture such properties, the network is not always able to
learn them from the training data alone, and practitioners must then resort to post-
processing. In this paper, we present an inference method for neural networks that
enforces deterministic constraints on outputs without performing post-processing
or expensive discrete search. Instead, for each input, we nudge continuous weights
until the network’s unconstrained inference procedure generates an output that
satisfies the constraints. We apply our method to pre-trained networks of various
quality for constituency parsing and find that in each case, not only does the
algorithm rectify a vast majority of violating outputs, it also improves accuracy.

1 Introduction

Suppose we have trained a sequence-to-sequence network [3} |11} 7] to perform a structured prediction
task such as constituency parsing [12]. We would like to apply our network to novel, unseen
examples, but still require that the network’s outputs obey the appropriate set of hard-constraints;
for example, that the output sequence encodes a valid parse tree. Enforcing these constraints is
important because down-stream tasks, such as relation extraction or coreference resolution, often
assume that the constraints hold. More generally, enforcing constraints is crucial for knowledge-base
(KB) construction since we must ensure that independently extracted facts conform to the logical and
semantic rules of the particular KB or domain.

Unfortunately, there is no guarantee that the neural network will learn these constraints from the
training data alone. Although in some cases, the outputs of state-of-the-art systems almost always
obey the constraints for the test-set of the data on which they are tuned [12[; in practice, the quality
of machine learning systems are much lower when run on data in the wild (e.g., because small shifts
in domain or genre change the underlying data distribution). In such cases, the problem of constraint
violations may become significant.

This raises the question: how should we enforce hard constraints on the outputs of a neural network?
We could perform expensive discrete search or manually construct a list of post-processing rules for
the particular problem domain of interest. Though, we might do even better if we continue to train
the neural network at test-time to learn how to satisfy the constraints on each input. Such a learning
procedure is applicable at test-time because learning constraints requires no labeled data: rather, we
only require a function that measures the extent to which a predicted output violates a constraint.

* Carnegie Mellon University,Pittsburgh, PA (contact: lee.jayyoon @ gmail.com)
T Oracle Labs, Burlington, MA (contact: michael.wick @oracle.com)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

In this paper, we present an inference method for neural networks that enforces output constraints by
adjusting the network’s weights at test-time. Given an appropriate function that measures the extent
of a constraint violation, we can express the hard constraints as an optimization problem over the
continuous weights and apply back-propagation to change them. That is, by iteratively adjusting the
weights so that the neural network becomes increasingly likely to produce an output configuration
that obeys the desired constraints. Much like scoped-learning, the algorithm customizes the weights
for each example at test-time [2]], but does so in a way to satisfy the constraints. We apply our method
to pre-trained sequence-to-sequence networks for syntactic parsing that vary in quality by about ten
F1 points. We find that in each case, the algorithm satisfies a large percentage of the constraints (up
to 94%) and that in almost every case (even for the lower-quality models), enforcing the constraints
improves the accuracy.

2 Constraint-aware inference in neural networks

To motivate our algorithm, we begin with the ideal optimization problem and find that unlike for linear
models with local constraints [9], the resulting Lagrangian is not well suited for globally constrained
inference in non-linear networks. We ultimately settle upon an alternative objective function that
reasonably models the constrained inference problem, but is no longer convex. Nevertheless, we find
that the algorithm works well in practice.

2.1 Problem definition and motivation

Typically, a neural network parameterized by weights W is a function from an input x to an output y.
The network has an associated compatibility function ¥(y;x, W) — R that measures how likely
an output y is given an input x under weights W. The goal of inference is to find an output that
maximizes the compatibility function and this is usually accomplished efficiently with feed-forward
or greedy-decoding. In this work, we want to additionally enforce that the output values belong to a
feasible set or grammar £* that in general depends on the input. For example, in syntactic parsing,
we might require that the sequence of shift-reduce commands obeys constraints ensuring that they
encode a valid parse tree that covers the entire input sentence. We are thus interested in the following
optimization problem:

max W(x,y, W)

s.t. yec[L*

Feed-forward and greedy inference are no longer sufficient since the outputs might violate the global
constraints (i.e., y ¢ £*). Instead, suppose we had a function g(y, £) — R that measures a loss
between a sentence y and a grammar £ such that g(y, £) = 0 if and only if there are no grammatical
errors in y. That is, g(y, £) = 0 for the feasible region and is strictly positive everywhere else. For
example, if the feasible region is a CFL, g could be the least errors count function [8]. We could then
express the constraints as an equality constraint and minimize the Lagrangian:

(D

min max U(x,y, W)+ Ag(y, L) (2

However, this leads to optimization difficulties because there is just a single dual variable for our
global constraint, resulting in a brute-force trial and error search. Even for cases in which the
constraint happens to factor over each output unit, it is not applicable to sequence-to-sequence models
for which there are a variable number of outputs (and thus dual variables). This would require
some mechanism for adding and removing dual variables on the fly in response to the optimization
procedure changing the length of the sequence.

To circumvent these issues, we propose an alternative in which we replace the Lagrange variable
with the weights of a neural network. Observe, for example, that the network’s weights control the
compatibility of the output configurations with the input. By properly adjusting the weights, we can
affect the outcome of inference by removing mass from invalid outputs. Unlike the case of a single
dual variable, the weights can assign different penalty amounts to different outputs. Further, the
weights are likely to generalize across related outputs because in most neural networks, the weights
are tied across space (e.g., CNNs) or time (e.g., RNNs). As a result, lowering the compatibility
function for a single invalid output has the potential effect of lowering the compatibility for an entire
family of related, invalid outputs; enabling faster search. With this in mind, it is tempting to replace
the single dual-variable with a “dual neural-network” that is parameterized by a set of “dual weights.”

This is powerful because we have effectively introduced an exponential number of implicit “dual
variables” (via the compatibility function, which scores each output) that we can easily control via
the weights; although similar, the new optimization is no longer equivalent to the original:

min max ¥(x,y, W) + ¥a(x,y, Wa)g(y, £) 3)

A

While a step in the right direction, the objective still requires combinatorial search because (1) the
maximization involves two non-linear functions (2) the constraints might be global. In contrast, the
functions involved in classic Lagrangian relaxation methods for NLP have multipliers for each output
variable that can be combined with linear models to form a single unified decoding problem for which
efficient inference exists [6} (10, 9]].

2.2 Algorithm

We therefore modify the optimization problem for a final time by (1) removing the compatibility
function that involves the original weights W and compensate with a regularizer that attempts to
keep the dual weights W), as close to these weights as possible, and (2) maximizing exclusively over
the network parameterized by W) while ignoring the constraint term during the maximization. This
results in the following optimization problem:

H‘%}n \I/(X,y7W)\)g(§’,£)+O[||W—WAH2

A

where y = argmax ¥U(x,y, W)) S
y

While this appears to be a brutal modification, it is reasonable because by definition of the constraint
loss g(+), the global minima must correspond to outputs that satisfy all constraints. Further, we expect
to find high-probability optima if we initialize W = W. Moreover, the objective is intuitive: if there
is a constraint violation in y then g(-) > 0 and we lower the compatibility of y to make it less likely.
Otherwise, g(-) = 0 and we leave the compatibility of y unchanged.

To optimize the objective, our algorithm (Algorithm [1)) alternates maximization to find y and
minimization w.r.t. W. In particular, we first approximate the maximization step by employing the
neural network’s inference procedure (e.g., greedy decoding or beam-search) to find y. Then, given a
fixed y, we minimize the objective with respect to the W by performing stochastic gradient descent
(SGD). Since y is fixed, the constraint loss term becomes a constant in the gradient; thus, making it
easier to employ external black-box constraint losses (such as those based on compilers) that may not
be differentiable. As a remark, note the similarity to REINFORCE [13]: output sentences are states,
the decoder outputs are actions and the constraint-loss is a negative reward. However, our algorithm
terminates upon discovery of an output that satisfies all constraints.

Algorithm 1 Constrained inference for neural nets
Inputs: test instance x, input specific CFL L£*, pretrained weights W
Wy, < W #reset instance-specific weights
while not converged do
y < f(x; W) #perform inference using weights W)
VvV« g(y, ACX)%\I/(X, v, Wy) + «||W — W,||2 #compute constraint loss
Wy < W, — nV #update instance-specific weights with SGD or a variant thereof
end while

3 Application to parsing

Consider the structured prediction problem of syntactic parsing in which the goal is to input a sentence
comprising a sequence of tokens and output a tree describing the grammatical parse of the sentence.
One way to model the problem with neural networks is to linearize the representation of the parse
tree and then employ the familiar sequence-to-sequence model [12]. Let us suppose we linearize the
tree using a sequence of shift (s) and reduce (r,r!) commands that control an implicit shift reduce
parser. Intuitively, these commands describe the exact instructions for converting the input sentence
into a complete parse tree: the interpretation of the symbol s is that we shift an input token onto
the stack and the interpretation of the symbol r is that we start (or continue) reducing (popping) the

top elements of the stack, the interpretation of a third symbol ! is that we stop reducing and push
the reduced result back onto the stack. Thus, given an input sentence and an output sequence of
shift-reduce commands, we can deterministically recover the tree by simulating a shift reduce parser.
For example, the sequence ssrr!ssr!rr!rr! encodes a type-free version of the parse tree (S (NP
the ball) (VP is (NP red))) for the input sentence “the ball is red”. It is easy to recover the
tree structure from the input sentence and the output commands by simulating a shift reduce parser,
performing one command at a time as prescribed by the classic algorithm.

Note that for output sequences to form a valid tree over the input, the sequence must satisfy a number
of constraints. First, the number of shifts must equal the number of input tokens mx, otherwise either
the tree would not cover the entire input sentence or the tree would contain spurious terminal symbols.
Second, the parser cannot issue a reduce command if there are no items left on the stack. Third, the
number of reduces must be sufficient to leave just a single item, the root node, on the stack. The
constraint loss g(y, £*) for this task simply counts the errors of each of the three types.

4 Related work

Previous work in enforcing hard constraints for parsing has focused on post-processing [12] or
building them into the decoder via sampling [4] or search constraints [14]. More generally, recent
work has considered applying neural networks to structured prediction; for example, structured
prediction energy networks (SPENS) [1]. SPENS incorporate soft-constraints via back-propagating
an energy function into “relaxed” output variables. In contrast, we focus on hard-constraints and back-
propagate into the weights that subsequently control the original non-relaxed output variables via
inference. Separately, there has been interest in employing hard constraints to harness unlabeled data
in semi-supervised learning [5]. Our work instead focuses enforcing constraints at inference-time.

Finally, as previously mentioned, our method highly resembles dual decomposition and more generally
Lagrangian relaxation for structured prediction [6, 10, 9]. In such techniques, it is assumed that a
computationally efficient inference algorithm can maximize over a superset of the feasible region
(this assumption parallels our case because unconstrained inference in the neural network is efficient,
but might violate constraints). Then, the method employs gradient descent to concentrate this superset
onto the feasible region. However, these techniques are not directly applicable to our non-linear
problem with global constraints.

5 Experiments

We investigate the behavior of the constraint satisfaction algorithm on the shift-reduce parsing task
described in Section [3] We transform the Wall Street Journal (WSJ) portion of the Penn Tree Bank
(PTB) into shift-reduce commands in which each reduce command has a phrase-type (e.g., noun-
phrase or verb-phrase). We employ the traditional split of the data with section 22 for dev, section 23
for test, and remaining sections 01-21 for training. We evaluate on the test set with evaltﬂFl. We
are interested in answering the following questions (Q1) how well does the sequence-to-sequence
network learn the constraints from data (Q2) for cases in which the network is unable to learn the
constraints, is our method able to actually enforce the constraints and (Q3) does the method enforce
constraints without compromising the quality of the network’s output. Q3 is particularly important
because we adjust the weights of the network at test-time and this may lead to unexpected behavior.

In each experiment, we learn a sequence-to-sequence network on a training set and then evaluate
the network directly on the test set using a traditional inference algorithm to perform the decoding
(either greedy decoding or beam-search). Then, to address (Q1) we measure the failure-rate (i.e., the
ratio of test sentences for which the network infers an output that fails to fully satisfy the constraints).
To address (Q2) we evaluate our method on the failure-set (i.e., the set of output sentences for
which the original network produces invalid constraint-violating outputs) and measure our method’s
conversion rate; that is, the percentage of failures for which our method is able to completely satisfy
the constraints (or “convert”). Finally, to address (Q3), we evaluate the quality (e.g., accuracy or F1)
of the output predictions on the network’s failure-set both before and after applying our method.

*http://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/

Inference Network Failure rate (n/2415) Conversion rate (%) F1 (before) F1 (after)
Net0 886 69.86 5847 60.41

Netl 971 73.12 59.03 59.82

Greedy Net2 474 88.40 58.77 61.18
Net3 611 88.05 62.17 64.49

Net4 317 79.81 65.62 68.79

Net0 602 82.89 60.45 61.35

Netl 707 86.14 61.30 61.26

Beam 2 Net2 269 82.53 61.31 61.37
Net3 419 94.27 65.40 66.65

Net4 206 87.38 66.61 71.15

Net0 546 81.50 61.43 63.25

Netl 615 84.72 61.99 62.86

Beam 5 Net2 220 80.91 61.63 63.34
Net3 368 92.66 67.18 69.4

Net4 160 87.50 67.5 71.38

Net0 552 80.62 61.64 62.98

Netl 613 83.69 62.83 63.95

Beam 9 Net2 225 80.00 61.04 62.52
Net3 360 93.89 67.83 70.64

Net4 153 91.50 68.66 71.69

Table 1: Evaluation of the proposed constrained-inference procedure.

While state-of-the-art networks almost always produce sequences that define valid trees [[12]; in
practice, the parsing quality of even the best systems degrade in the wild (e.g., due to domain, genre,
tokenization, out-of-vocabulary words and data-distribution changes in general) or languages with
smaller amounts of training data. In order to study our algorithm on a wide range of more realistic
accuracy regimes, we train many networks with different hyper-parameters producing models of
various quality. We limit ourselves to the WSJ subset of the PTB. We select five networks (Net1-5)
with F1 scores, respectively, 71.5,71.6, 73.0, 78.1, 81.2. We study the behavior of the constraint-
satisfaction method on the five networks using various inference procedures for decoding: greedy
decoding and beam-search with a beam-size of 2, 5, and 9 (resp. beam?2, beam5, beam9).

We report the results in Table[I] The left-most column indicates the inference procedure employed in
the experiment. The indicated inference procedure is employed both for the initial network prediction
and in the inner loop of our algorithm. The failure-rate is given as a fraction of violated outputs over
the total number of test examples. This statistic indicates the extent to which constraint-violations
are a problem for each initial network prior to applying constrained inference. In order to address
question Q2—the ability of our approach to satisfy constraints—we measure conversion rates. As
before, the conversion rates are the percentage of the examples in the failure-sets for which the
constraint-satisfaction method is able to satisfy all the constraints. Across all the experimental
conditions, the conversion rates are high, often above 80 and sometimes above 90. The conversion
rates appear to correlate with the quality of the parser: for each inference algorithm, conversion rates
tend to be higher for Net3 and Net4 than for NetO and Netl.

Next, in order to address question Q3—the ability of our approach to satisfy constraints without
negatively affecting output quality—we measure the F1 scores on the failure-sets both before and
after applying the constraint satisfaction algorithm. Since this F1 measure is only defined on valid
trees, we employ heuristic post-processing, as described earlier, to ensure all outputs are valid. We
find that in every case, except one, our approach satisfies constraints in a way that improves the
quality of the parses (as compared to employing post-processing).

Finally, on outputs that our algorithm converts, we report the number of iterations that it takes. Across
all conditions, it takes 5—7 steps to convert 25% of the outputs, 15-20 steps to convert 50%, 39-57
steps to convert 80%, 58—73 steps to convert 90% and 77-84 steps to convert 95%.

6 Conclusion

We presented an algorithm for satisfying constraints in neural networks that avoids combinatorial
search, but employs the network’s efficient unconstrained procedure as a black box. We evaluated
the algorithm on sequence-to-sequence parsing and found that it could satisfy up to 94% of the
constraints. An exciting area of future work is to generalize our method and explore the idea of
neural Lagrangian relaxation, in which a neural network replaces the dual variable in the Lagrangian
optimization problem. In much the same way that neural networks have successfully modeled the
latent variables in variational learning, we hope that the networks could learn the Lagrange variables
and provide extremely fast amortized inference for constrained optimization.

References

[1] David Belanger and Andrew McCallum. Structured prediction energy networks. In International
Conference on Machine Learning, 2016.

[2] David M. Blei, Andrew Bagnell, and Andrew K. McCallum. Learning with scope, with
application to information extraction and classification. In Uncertainty in Artificial Intelligence
(UAI), 2002.

[3] Kyunghyun Cho, Bart Van Merriénboer, Caglar Giilgcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724—1734. Association for Compu-
tational Linguistics, October 2014.

[4] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural
network grammars. In NAACL-HLT, pages 199-209, 2016.

[5] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric P. Xing. Harnessing deep
neural networks with logical rules. In Association for Computational Linguistics (ACL), 2016.

[6] Terry Koo, Alexander M Rush, Michael Collins, Tommi Jaakkola, and David Sontag. Dual
decomposition for parsing with non-projective head automata. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pages 1288—1298. Association
for Computational Linguistics, 2010.

[7] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani,
Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. Machine Learning, pages 1378-1387, 2016.

[8] Gordon Lyon. Syntax-directed least-errors anallysis for context-free languages: A practical
approach. Programming Languages, 17(1), January 1974.

[9] Alexander M. Rush and Michael Collins. A tutorial on dual decomposition and lagrangian
relaxation for inference in natural language processing. Journal of Artificial Intelligence
Research, 45:305-362, 2012.

[10] Alexander M Rush, David Sontag, Michael Collins, and Tommi Jaakkola. On dual decom-
position and linear programming relaxations for natural language processing. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1-11.
Association for Computational Linguistics, 2010.

[11] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Neural Information Processing Systems (NIPS), 2014.

[12] Oriol Vinyals, Luksz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.
Grammar as a foreign language. In NIPS, 2015.

[13] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229-256, 1992.

[14] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-
mization. In Empirical Methods in Natural Language Processing, pages 1296-1306, 2016.

	Introduction
	Constraint-aware inference in neural networks
	Problem definition and motivation
	Algorithm

	Application to parsing
	Related work
	Experiments
	Conclusion

