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Abstract

Entity resolution systems often rely on string similarity between entity mention
spellings. These string similarity models are potentially more effective when
they are learned for a particular domain. For example, “John A. Smith” is more
similar to “John Austin Smith” than “John B. Smith” for Western names and
“ABC” is more similar to “ABC Co.” than “CBC” for business names. However, an
unweighted edit distance model would make wrong predictions in both of these
cases. In this paper, we train neural network models of string similarity to predict
how likely two mentions are to refer to the same entity based solely on the spelling
of the mentions. Our approach uses recurrent neural network models to learn
embedded representations of the characters of a string, and a learned model to
score the alignment of the embedded representations of a pair of strings. We
describe an approach using convolutional neural networks to score the alignment
of the embedded representation. We compare our approach and several baseline
approaches on large datasets and find that the convolutional alignment model
significantly outperforms the next best baseline.

1 Introduction

String similarity measures are a crucial component in many entity resolution, deduplication, and
coreference systems. Entity resolution approaches are pervasively used in automated knowledge
base construction systems to ground ambiguous mentions to the entities to which they refer. String
similarity measures are used to determine how likely two (or more) mention spellings are to refer
to the same entity independent of other contextual features. Simple string similarity measures such
as Levenshtein, longest common subsequence, and Jaro-Winkler are used in many state of the art
approaches [20, 23] 24 133]]. Levin et al [23] use Jaro-Winkler similarities when performing entity
resolution on a knowledge base of scientific authors, as do Li et al [24] in record linkage for business
names. While these simple similarity measures which compute the number of transformations needed
to align one sequence of characters with the other can be effective, they have several shortcomings.
These measures have only a few parameters describing the alignment of strings, which are not robust
enough to capture unique characteristics of string similarity in a given domain (e.g. company names,
music album titles) [12, 25]. More specifically, these measures often lack a parameterization of the
surrounding context of the string where an edit is applied. This is required, for example, to capture
that it is more likely to see a company designation (e.g “Inc.”, “L.L.C.”) at the end of a string than
in the middle or beginning. These models typically also have a relatively simple model of edits,
which gives a single weight to each edit type for only a few simple operations and is independent
of the characters involved in the edit. This does not allow the model to capture that changing a
person’s middle name from a full name to an initial is more likely than changing one middle initial to
a different initial (i.e. “John A. Smith” is more similar to “John Austin Smith” than “John B. Smith”).
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Figure 1: A ‘soft alignment’ matrix for two
strings obtained by multiplying the LSTM
hidden state representations at each char-
acter position. The soft alignment matrix
captures regularities at various positions.
For different input strings, these regular-
ities would be spread over in the matrix.
These patterns can be easily captured by a
convolutional neural network.

Hicks, William Melvin

Learned string edit models capture both the context of an edit as well as the contents involved in the
edit. These models are a specific case of the more generally studied problem of sequence alignment.
[8, 12611301 135]. Learned sequence alignment models have been shown to be very powerful for string
edits, computational morphology, written-to-spoken form conversion, and other related problems
(1415016l 250 127].

In this paper, we focus on the problem of learning string similarity measures for entity aliases. More
precisely, we train neural network models of string similarity to predict how likely two mentions are
to refer to the same entity based solely on the spelling of the mentions. Mentions can appear in noisy
or ambiguous forms— nicknames can be used and names can appear in reverse order (Figure [I). Our
approach uses recurrent neural network models to learn embedded representations of the characters
of a string and a learned model to score the alignment of the embedded representations of a pair of
strings. The recurrent models of each string provide a string-context dependent representation of
characters. These context dependent representations can be used to form a soft alignment matrix
(Figure[T). Mentions belonging to the same entities often exhibit diagonal patterns which are spread
out in the soft alignment matrix. Such patterns can be easily captured by filters of convolutional
neural networks. Our model is trained end-to-end and we evaluate our model on five automatically
constructed datasets from publicly available knowledge bases. The knowledge bases span entity alias
information on a variety of domains including patent assignees, music artists, disease names, and
entities in Wikipedia. We compare our approach and several baseline approaches on these datasets
and find that the convolutional alignment model significantly outperforms the next best baseline.

2 Learning String Similarity Measures

2.1 Problem

Our goal is to learn a string similarity measure for entity mentions. Our model only takes into account
the spelling of the entity mention and does not consider any additional contextual information which
may be available. We focus on this problem with a narrower scope with the belief that our approach
could be used in conjunction with any existing or new entity resolution system that makes use of a
string similarity measure. As string similarity measures are more typically used in entity resolution,
where the task is to discover or cluster mentions into entities rather than link to an existing entity in a
knowledge base, we focus on measuring similarities between mention spellings and do not model
entities themselves.

We refer to a pair of mention spellings as aliases if both could be used to refer to the same entity. For
instance, the mention strings Barack H. Obama and Barry Obama are aliases as they both refer
to the entity wiki/Barack_Obama. Note that the pairs (Barack Obama, Obama) and (Michelle
Obama, Obama) are aliases, but of course (Michelle Obama, Barack Obama) are not. In other
words, the aliases relation is not transitive. The task of learning a string similarity measure is to
produce a function which maps a pair of strings to a similarity score proportional to how likely the
pair of strings are aliases.

2.2 Modeling Entity Aliases

Given two mention spellings m and m’, the similarity score is based on the “alignment” of m and m’'.
Classic string alignment algorithms including Levenshtein distance, Longest Common Subsequence,
Needleman-Wunsch [26]], and Smith-Waterman [30] consider a similarity or “soft alignment” matrix



S of dimension max(|m|, |m’|) x max(|m|,|m’|) and an algorithm for scoring the alignment by a
hard alignment matrix D. The value of S;; is the similarity score between the i** character of m
(i.e. m;) and the j*" character of m/. The matrix D is typically defined with the recursive formula
Dij = SL] . H[mz = m;] + H[TTLT 7& m;] . max(ngl.)Di_Lj,w(z) Di,j—lng’)Di—l,j—l)- T is the

i—1,j
indicator function and the weights w(l) refer to deletion, w.(,z.) to insertion, and w(3) to substitution,

all of which are parameterized globally or at a particular position in the matrix. The alignment
score is the value D), ||, computed by dynamic programming. Rather than using fixed values for
the similarity matrix and the dynamic program, we learn the values of the similarity values in the
alignment matrix as well as a method for scoring the alignment using labeled alias data extracted
automatically from publicly available knowledge bases.

Alignment Matrix - Character Level RNN The similarity matrix is based on an embedding-based
approach that represents characters in a way that is dependent on their surrounding characters in
the sequence. We do this by learning character representations with a bidirectional long short-term
memory network (LSTM) [18] [19] applied to the mention spelling m. For each character m; in m,
the model encodes the character with the d dimensional vector, h;, that is the concatenation of the "
hidden state of the LSTM in both directions. For the mention spelling m, we stack the hidden states
of the bidirectional LSTM together to form a matrix H,,, € RL*¢ where L is the maximum string
length considered by our models. Note that only the first || rows of the matrix will contain values
and the remaining rows will be filled with zeros. For two mentions m and m’ we simply compute the
alignment matrix by S = H,,, HZ .

Alignment Models Given the similarity matrix S as defined, we want to compute a score associated
with whether or not m and m/ are aliases. Our proposed approach uses a convolutional neural network
(CNN) [22]] applied to S. The CNN approach provides several advantages over the dynamic program.
The CNN is more computationally efficient. It also is able to capture multiple patterns of alignment
and longer range dependencies in the strings. For instance, it is quite natural for the CNN to
discover an alignment between Obama, Barack and Barack Obama, which would score low in
many standard edit models that operate over the sequence in a linear way. The CNN can detect these
two independently aligned regions and determine if the pattern corresponds to a match. Our particular
CNN architecture is a three layer network with decreasing filter sizes. A linear model is used to score
the final output of the CNN. In some ways, this strategy is closely related to the block alignment
approach to longest common subsequence in which regions of the string are identified independently
and then merged together. See Figure 2] for a pictoral representation of the CNN model.

Alternative Approaches The

model consists of two subcompo- Stack

nents: the character RNN which e Convolation Posling  Output Layer
produces the similarity matrix, g@ggg ;_\?“ % @
and the CNN which is akin to Mel C e ]

a scoring mechanism. We com-
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that serve as an ablation study. In Melanie C
Section[3] we replace the learned

similarity matrix with a binary Figure 2: CNN Alignment Model

matrix containing ones where the

two strings share the same char-

acter and zeroes elsewhere. We also compare to an approach that uses the learned similarity matrix,
but does not use the CNN architecture, just a linear layer. Lastly, we compare to an approach that
only uses the similarity between the last hidden states of the LSTM applied to m and m’. This is
exactly the value stored in the cell S|, | || Of the learned similarity matrix.

Training Objective We train each network on triples of mention strings (s,¢,n) where s is a
mention string, ¢ is a string that is an alias of s, and n is a string that is not an alias of s. We use the
Bayesian Personalized Ranking objective [28]: o(f(s,t) — f(s,n)). The training triples come from
one of the publicly available knowledge bases containing entity aliases as described in Section
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Figure 3: Example Nearest Neighbors according to String Edit Models

3 Experiments

3.1 Task and Metrics

As described in Section [2.1] the focus of this paper is on predicting whether or not two mentions are
aliases based solely on the string spelling of the mentions. We evaluate models for detecting aliases
with the following retrieval-based evaluation: given a mention spelling as a query, rank among a
set of candidate aliases based on how likely the candidate is an alias of the query. We evaluate the
predicted ranking with respect to the ground truth labeled aliases on the Mean Average Precision and
Hits at K={1, 10, 50}.

3.2 Datasets

To the best of our knowledge, there are no existing large scale datasets for this particular task, and so
we constructed training and evaluation datasets from public knowledge bases, which contain entity
alias information. Our evaluation datasets are the following: Wikipedia — all pages in Wikipedia
[S]] (with the exception of redirects, disambiguation, and talk pages) are considered to be entities.
For each entity, we extract spans of text in Wikipedia hyperlinked to that entity’s page as aliases for
that entity. Wikipedia-People — a filtered version of the Wikipedia dataset restricted to entities with
the type person in Freebase [[10]]. Patent Assignee — The National Bureau of Economic Research
provides entity information for assignees in United States patents [2]. We align this data with the
non-disambiguated assignee field in the patent records available in PatentsView [3] to determine
the aliases of each entity. Music Artist — The MusicBrainz [32] database contains alternative name
spellings and aliases for music artists. Diseases — The Comparative Toxicogenomics Database
contains alternative name spellings and aliases for disease entities [[13].

We use a simple automated process to convert the entity alias information into a dataset for mention
alias detection. For each dataset, we randomly split the entities evenly into three groups for training,
development, and test. We sample mention queries by first sampling an entityﬂ We then sample a
mention alias of this entity to be the query. We determine which mention spellings in the knowledge
base are aliases of the query (true positives). This follows the definition given in Section [2.1} this is
the set of aliases of the entities to which the query is known to refer. Lastly, we carefully select a
subset of spellings that are not aliases of the query. We select five types of negative examples, which
are illustrated in Figure ] The groups are (1) strings which are a Levenshtein distance of 1 or 2 of
the query, which are not true positives; (2) strings which share a 4-gram word prefix or suffix with
the query and are not true positives; (3) aliases of the true positives, which are themselves not true
positives (i.e. cases where transitivity does not hold); (4) the aliases of the strings in set (3), which
are not true positives; (5) strings chosen at random which are not true positives.

3.3 Methods

We compare the following methods in our experiments: Classic String Similarity Approaches —
Levenshtein Distance (Lev), Jaro-Winkler distance (JW), Longest Common Subsequence (LCS).
Phonetic Relaxation — We apply Soundex phonetic mapping to strings and then perform Levenshtein

"Proportional to a measure of frequency or popularity of that entity when possible. For the Wikipedia-based
datasets this is estimated by the number of hyperlink spans linking to the entity. For the Assignee dataset, this
is estimated by the number of patents held by the entity. For the Music Artist dataset, it is done by the entity
occurrences in the Last-FM-1k dataset [[1, [11]. For the disease dataset, we do not have this information and
sample uniformly at random.
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Figure 4: Illustration of true positive aliases and the five types of true negatives used in evaluation and
described in the text. The figure depicts the source knowledge base with mentions as ovals, entities
as squares, and the query in a red oval. Links indicate that an entity is referred to by that mention.

Dataset | Lev | JW | LCS | Sdx | AlignDot | AlignLinear | AlignBinary | AlignCNN

Wiki 0.238 | 0.297 | 0.332 | 0.294 0.230 0.208 0.287 0.340
WikiPPL | 0.246 | 0.283 | 0.397 | 0.308 0.328 0.234 0411 0.538
Assignee | 0.720 | 0.850 | 0.622 | 0.733 0.790 0.797 0.838 0.910

Artist 0.296 | 0.328 | 0.293 | 0.354 0.399 0.250 0.403 0.475

Disease | 0.206 | 0.244 | 0.191 | 0.259 0.247 0.230 0.252 0.360

Table 1: Mean Average Precision Results

distance on the mapped results (Sdx). AlignCNN — Our approach using a learned similarity matrix
with the CNN based alignment scoring model. AlignLinear — Our approach using a learned similarity
matrix with a linear alignment model. AlignBinary — Our approach using a binary similarity matrix
(Sij = I[m; = mj]) and CNN alignment model. AlignDot — Our approach that uses the dot product

between the last hidden state of 7 and m’ as the alignment score (i.e. S}y|m|)-

3.4 Alias Detection Evaluation

Table[I] provides the MAP results for each of the methods across the datasets. Table[2] provides the
Hits at 1, 10, and 50 results. We compare the methods across each of the datasets and observe that the
AlignCNN performs the best (and often offering significant improvement) on nearly all datasets and
metrics. We hypothesize that this is due to the CNN’s ability to capture more complex patterns by
means of the alignment matrix. In each experiment, we optimize the hyperparameters of the models
on the dev sets using a grid search over embedding dimension, learning rate and number of filters.
The AlignCNN model uses a three layer CNN with filter sizes of 7,5, and 5, max-pooling, embedding
dimension of 100, and RNN hidden state size of 200. All models were implemented in PyTorch [4]
and our implementation is available here []

4 Related Work

Sequence modeling and alignment is a widely studied problem in both theoretical and applied
computer science and is too vast to be properly covered in this section. We note that the most relevant
work in this area to this paper is other work on learned string edit models including the work of
McCallum et al [25] which uses a CRF based model, and Bilenko et al which uses a SVM based
model [9]. A generative version of a similar model was developed by Andrews et al [[6] and also
used for joint cross document coreference and string edit modeling tasks [7]]. Closely related work
also appears in computational morphology [14} 15 27]. Much of this work uses weighted finite state
transducers with learned parameters. This is a more complicated model class than our character-

https://github.com/iesl/learned-string-alignments
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Dataset | Hitsat | Lev W LCS Sdx | AlignDot | AlignLinear | AlignBinary | AlignCNN
1 0.553 | 0.630 | 0.569 | 0.545 0.436 0.358 0.509 0.586
Wiki 10 0.38 | 0.471 | 0.450 | 0.381 0.383 0.355 0.444 0.515
50 0.373 | 0.488 | 0.441 | 0.366 0.448 0.446 0.507 0.556
1 0.434 | 0.506 | 0.570 | 0.422 0.421 0.300 0.550 0.680
WikiPPL 10 0.397 | 0.397 | 0.475 | 0.323 0.469 0.357 0.544 0.665
50 0.417 | 0.488 | 0.517 | 0.370 0.745 0.547 0.672 0.745
1 0.850 | 0.920 | 0.726 | 0.808 0.863 0.821 0.870 0.932
Assignee 10 0.805 | 0.896 | 0.738 | 0.746 0.870 0.879 0.904 0.950
50 0.847 | 0.930 | 0.817 | 0.789 0.927 0.940 0.946 0.970
1 0.442 | 0.475 | 0.417 | 0.382 0.46 0.251 0.483 0.562
Artist 10 0.369 | 0.386 | 0.398 | 0.328 0.538 0.388 0.525 0.581
50 0.448 | 0.506 | 0.502 | 0.430 0.707 0.595 0.682 0.743
1 0.514 | 0.517 | 0.458 | 0.451 0.449 0.314 0.381 0.505
Disease 10 0.266 | 0.300 | 0.285 | 0.26 0.329 0.334 0.349 0.475
50 0.305 | 0.395 | 0.371 | 0.324 0.470 0.497 0.511 0.604

Table 2: Hits at K Results

character interaction matrix and we hope to consider these models with richer transformations in
future work. Similar neural network architectures have been used for related sequence alignment
problems. The Match-SRNN computes a similarity matrix over two sentence representations and
uses an RNN applied to the matrix in a manner akin to the classic dynamic program for question
answering and IR tasks [34]. A similar RNN-based alignment approach was also used for phoneme
recognition [17]]. Character-level models have been the study of many previous works [21}[31]]. String
similarity models are crucial to record linkage, deduplication, and entity linking tasks. These include
author coreference [23], record linkage in databases [24]], and record linkage systems with impactful
downstream applications [29].

5 Conclusion and Discussion

In this paper, we described and evaluated methods for learning a string similarity measure to detect
whether two mention strings could refer to the same entity. We presented an approach based on
learning character-level representations with neural networks as well as learning to align these
representations with convolutional networks. There is room for much future work in this area,
including: using a relaxed/differentiable version of the classic string alignment dynamic program in
place of the CNN, jointly using the string edit modeling approach in this paper in an entity resolution
system similar to Andrews et al [7]], and finally using richer input structures, such as FST states, to
the CNN alignment model.
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