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Abstract

Knowledge bases (KB), both automatically and manually constructed, are often
incomplete — many valid facts can be inferred from the KB by synthesizing
existing information. A popular approach to KB completion is to infer new relations
by combinatory reasoning over the information found along other paths connecting
a pair of entities. Given the enormous size of KBs and the exponential number of
paths, previous path-based models have considered only the problem of predicting
a missing relation given two entities, or evaluating the truth of a proposed triple.
Additionally, these methods have traditionally used random paths between fixed
entity pairs or more recently learned to pick paths between them. We propose a
new algorithm, MINERV which addresses the much more difficult and practical
task of answering questions where the relation is known, but only one entity. Since
random walks are impractical in a setting with combinatorially many destinations
from a start node, we present a neural reinforcement learning approach which
learns how to navigate the graph conditioned on the input query to find predictive
paths. Empirically, this approach obtains state-of-the-art results on several datasets,
significantly outperforming prior methods.

1 Introduction

Automated reasoning, the ability of computing systems to make new inferences from observed
evidence, has been a long standing goal of artificial intelligence. We are interested in automated
reasoning on large knowledge bases (KB) with rich and diverse semantics [38 [1} [4]. KBs are
highly incomplete [22], and facts not directly stored in a KB can often be inferred from those
that are, creating exciting opportunities and challenges for automated reasoning. For example,
consider the small knowledge graph in figure[I] We can infer the (unobserved fact) home stadium of
Colin Kaepernick from the following reasoning path: Colin Kaepernick — PlaysinTeam — 49ers —
TeamHomeStadium — Levi’s Stadium. Our goal is to automatically learn such reasoning paths in
KBs. We frame the learning problem as one of query answering, that is to say, answering questions
of the form (Colin Kaepernick, PlaysinLeague, ?).

From its early days, the focus of automated reasoning approaches has been to build systems which
can learn crisp symbolic logical rules [21}29]. Symbolic representations have also been integrated
with machine learning especially in statistical relational learning 24/ 13} |19} 20], but due to poor
generalization performance, these approaches have largely been superceded by distributed vector
representations. Learning embedding of entities and relations using tensor factorization or neural
methods has been a popular approach (Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013;
inter alia), but these methods cannot capture chains of reasoning expressed by KB paths. Neural
multi-hop models [25 (15} 41]] address the aforementioned problems to some extent by operating on
KB paths in vector space. However, these models take as input a set of paths which are gathered by
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performing random walks independent of the query relation. Additionally, models such as [25, 18]
use the same set of initially collected paths to answer a diverse set of query types (e.g. MarriedTo,
Nationality, WorkslIn etc.).

This paper presents a method for efficiently searching the graph for answer-providing paths us-
ing reinforcement learning (RL) conditioned on the input question, eliminating any need for pre-
computed paths. Given a massive knowledge graph, we learn a policy, which, given the query
(entity,, relation, ?), starts from entity; and learns to walk to the answer node by choosing to take a
labeled relation edge at each step, conditioning on the query relation and entire path history. This
formulates the query-answering task as a reinforcement learning (RL) problem where the goal is to
take an optimal sequence of decisions (choices of relation edges) to maximize the expected reward
(reaching the correct answer node). We call the RL agent MINERVA for ”Meandering In Networks of
Entities to Reach Verisimilar Answers.”

Our RL-based formulation has many desirable properties. First, MINERVA has the built-in flexibility to
take paths of variable length, which is important for answering harder questions that require complex
chains of reasoning [36]. Secondly, MINERVA needs no pretraining and trains on the knowledge
graph from scratch with reinforcement learning; no other supervision or fine-tuning is required
representing a significant advance over prior applications of RL in NLP. Third, our path-based
approach is computationally efficient, since by searching in a small neighborhood around the query
entity it avoids ranking all entities in the KB as in prior work. Finally, the reasoning paths found by
our agent automatically form an interpretable provenance for its predictions.

The main contributions of the paper are: (a) We present agent MINERVA, which learns to do query
answering by walking on a knowledge graph conditioned on an input query, stopping when it reaches
the answer node. The agent is trained using reinforcement learning, specifically policy gradients
(§ E]) (b) We evaluate MINERVA on several benchmark datasets and compare favorably to Neural
Theorem Provers (NTP) [33]] and Neural LP [48]], which do logical rule learning in KBs. (c) We
also compare to DeepPath [46] which uses reinforcement learning to pick paths between entity pairs.
The main difference is that the state of their RL agent includes the answer entity since it is designed
for the simpler task of predicting if a fact is true or not. As such their method cannot be applied
directly to our more challenging query answering task where the second entity is unknown and must
be inferred. Nevertheless, MINERVA outperforms DeepPath on their benchmark NELL-995 dataset
when compared in their experimental settings.

2 Task and Model

We formally define the task of query answering in a KB. Let £ denote the set of entities and R be the
set of binary relations. Then a KB is a collection of facts stored as triplets (e,r,e;) where ej,e; € €
and r € R. Query answering seeks to answer questions of the form (ej,r, ?), e.g. Toronto, locatedIn,
?. We would also like to clearly point out the difference between query answering and the task of
fact prediction. Fact prediction involves predicting if a fact is true or not, e.g. (Toronto, locatedIn,
Canada)?. This task is easier than predicting the correct entity as the answer in query answering
since the latter require finding the answer entity among many possible entities.

Next we describe how we reduce the problem of query answering in a KB to a finite horizon sequential
decision making problem and solve it using reinforcement learning. We begin by representing the



environment as a deterministic Markov decision process on a knowledge graph G derived from
the KB (. Our RL agent is given an input query of the form (elq,rq, ?). Starting from vertex
corresponding to e, in the knowledge graph G, the agent learns to traverse the environment/graph
to mine the answer and stop when it determines the answer (§ 2.2). The agent is trained using
policy gradient more specifically by REINFORCE [45] with control variates (§ [2.3). Let us begin by
describing the environment.

2.1 Environment - States, Actions, Transitions and Rewards

Our environment is a finite horizon deterministic and partially observed Markov decision process
that lies on a knowledge graph derived from the KB. Recall that a KB is collection of facts stored as
triplets (ej,r,e2) where ej,ez € € and r € R. From the KB, a knowledge graph G can be constructed
where the entities s,7 are represented as the nodes and relation r as labeled edge between them. Also,
following previous approaches [2, 25| 46]], we add the inverse relation of every edge, i.e. for an
edge (e1,r,e) € E, we add the edge (e2,r~!,e;) to the graph. On this graph we will now specify a
deterministic partially observable Markov decision process, which we elaborate below.

States. The state space consists of all possible query-answers cartesian product with the set of
entities. Intuitively, we want a state to encode the query (e14,1q), the answer (e2q), and a location of
exploration e (current node of the entity). Thus overall a state is represented by (e, e1q,1q,€2q) and
the state space consists of all valid combinations.

Observations. The complete state of the environment is not observable, but only its current location
of exploration and query can be observed but not the answer, i.e. only (e(,ejq,1q) is observed.

Actions. The set of possible actions Ag from a state S = (e(,eiq,Iq,€2q) consists of all outgoing
edges of the vertex e in G and NO-OP. Basically, this means an agent at each state has option to
select which outgoing edge it wishes to take having the knowledge of the label of the edge r and
destination vertex ¢ or just take no action and remain at the current vertex.

Transition. The environment evolves deterministically by just updating the state to the new vertex
pointed by the edge selected by the agent through its action. The query and answer remains the same.

Rewards. We only have a terminal reward of +1 if the current location is the correct answer at the
end and 0 otherwise. To elaborate, if St = (e, e1q,1q,€2q) is the final state, then we receive a reward
of +1 if e; = exq else 0.

2.2 Policy Network

To solve the finite horizon deterministic partially observable Markov decision process described
above, we aim to design a randomized history-dependent policy ©T = (dy,dy,...,dr_1), where dy :
H; — P(As,) and history H; = (H;_1,A;—1, O;) is just the sequence of observations and actions taken.
We restrict ourselves to the function class expressed by long short-term memory network (LSTM)
[L7] for learning the randomized history-dependent policy.

An agent based on LSTM encodes the history H; as a continuous vector hy € R We also have

embedding matrix r € RIRI*? and e € RI€/* for the binary relations and entities respectively. The
history embedding for H, = (H,_1,A,_1, O;) is updated according to LSTM dynamics:

h¢ =LSTM (h¢_1, [a¢—1;0¢]) (D

where a;_; € R? and oy € R? denote the vector representation for action/relation at time ¢ — 1
and observation/entity at time ¢ respectively and [;] denote vector concatenation. To elucidate,
a;_1 =ry,_ |, i.e. the embedding of the relation corresponding to label of the edge the agent chose at
time r — 1 and of = e, if O; = (e, e 1qs rq) i.e. the embedding of the entity corresponding to vertex
the agent is at time 7.

Based on the history embedding h¢, the policy network makes the decision to choose an action
from all available actions (Asg, ) conditioned on the query relation. Recall that each possible action
represents an outgoing edge with information of the edge relation label / and destination vertex/entity
d. So embedding for each A € A, is [r;eq], and stacking embeddings for all the outgoing edges
we obtain the matrix A¢. The network taking these as inputs is parameterized as a two-layer feed-
forward network with ReLU nonlinearity which takes in the current history representation h¢ and the
embedding for the query relation rq and outputs a probability distribution over the possible actions



Task Metric Model

ComplEx NTP NTP-A MINERVA
S1 99.37+£0.4  90.83+154  100.0+£0.0  100.0+0.0
S2 AUC-PR 87.95+2.8 87.4£11.7 93.04+0.4 91+0.01
S3 48.44+6.3 56.68+17.6 77.26£17.0  93+0.01

Table 1: Performance on COUNTRIES dataset. MINERVA significantly outperforms baselines in the
challenging S3 task.

from which a discrete action is sampled. In other words,

d¢ = softmax (A¢(WReLU (W [h;0¢;14])))
A, ~ Categorical (dy)

Note that the nodes in G do not have a fixed ordering or number of edges coming out from them. The
size of matrix A¢ is |As, | X 2d, so the decision probabilities d; lies on simplex of size |Asg,|. Also the
procedure above is invariant to order in which edges are presented as desired and falls in purview of
neural networks designed to be permutation invariant [49]]. Finally, to summarise, the parameters of
the LSTM, the weights Wy, W3, the corresponding biases (not shown above for brevity), and the
embedding matrices form the parameters 0 of the policy network.

2.3 Training

For the policy network (mg) described above, we want to find parameters 6 that maximizes the
expected reward:

J(e) = E(el,r,ez)NDEAl,...AT,INTEe [R(ST)|S] = (617617”, 62)]

where we assume there is a true underlying distribution (e,r,e2) ~ D. To solve this optimization
problem, we employ REINFORCE [45]] as follows:

e The first expectation is replaced with empirical average over the training dataset.

e For the second expectation, we approximate by running multiple rollouts for each training
example. The number of rollouts is fixed and for all our experiments we set this number to 20.

e For variance reduction, a common strategy is to use an additive control variate baseline
[16L[12L[11]. We use a moving average of the cumulative discounted reward as the baseline. We
tune the weight of this moving average as a hyperparameter. Note that in our experiments we
found that learnt baseline performed similarly, but we finally settled for cumulative discounted
reward as the baseline owing to its simplicity.

e To encourage the policy to sample more diverse paths rather than sticking with a few, we add
an entropy regularization term to our cost function after multiplying it by a constant (3). We
treat 3 as a hyperparameter to control the exploration exploitation trade-off.

Experimental Details We choose the relation and embedding dimension size as 200. The action
embedding is formed by concatenating the entity and relation embedding. We use a 3 layer LSTM
with dimension size of 400. The hidden layer size of MLP (weights W1 and W>) is set to 400. We
use Adam [[18] with the default parameters in REINFORCE for the update.

3 Experiments

We test our model on the benchmark datasets of NTP [33]. We also compare those results with
ComplEXx [42] and NeuralLLP [48]. We also test our model on a large knowledge graph NELL-995 in
the same setting as DeepPath [46]]. Lastly, we test our model on a synthetic grid world dataset.

COUNTRIES, KINSHIP, UMLS We first test our model on the COUNTRIES dataset which
is explicitly designed to test the ability of models to learn logical rules. It contains
countries, regions and subregions as entities. The dataset has 3 tasks (S1-3 in ta-
ble [I) each requiring reasoning steps of increasing length and difficulty. We report the
performance of the area under the precision-recall curve (AUC-PR) for the COUNTRIES
dataset. We also compare MINERVA to NeuralLP [48] on the UMLS and KINSHIP datasets.

4



Task DeepPath MINERVA 1.0

athleteplaysinleague 0.960 0.970 0.9 _—l S~ ® - o |
worksfor 0.711 0.825 ' u R
organizationhiredperson 0.742 0.851 0.8} RN .
athleteplayssport 0.957 0.985 © 071 ‘m i
teamplayssport 0.738 0.846 2 AN
personborninlocation 0.795 0.793 2 0.6} \ 1
athletehomestadium 0.890 0.895 0.5}|® ® MINERVA AN
organizationheadquarteredincity 0.790 0.946 B # Neural LP N
athleteplaysforteam 0.750 0.824 0.4L : . L
] i 2-4 4-6 6-8 8-10
Table 2: MAP scores for d.1ffer§:nt query Felatlons on the Path length
NELL dataset. Note that in this comparison, MINERVA
refers to only a single learnt model for all query relations Figure 2: Grid world experiment:
which is competitive with individual DeepPath models We significantly outperform Neu-
trained separately for each query relation. ralLP for longer path lengths.
Model UMLS  KINSHIP
Our experimental settings and scores are directly comparable to ~ NeuralLP  0.70 0.73

[33]] and are reported in table Table [3| reports the results MINERVA 091 0.93
for UMLS and KINSHIP in which we substantially outperform Table 3: HITS@10 on UMLS and
NeuralLLP. KINSHIP

NELL-995 We also compare MINERVA to DEEPPATH. For a fair comparison, we only rank the
answer entities and the negative examples in the dataset released by them. But unlike them, we train
one model which learns for all query relations. If our model is not able to find the correct entity
or one of the negative entities, the query gets a score of negative infinity. As show in table [2| we
outperform them in most and achieve comparable performance in the rest of the query relations.

GRID WORLD PATH FINDING Noted by previous work [33, 146, 8| |48]], often the reasoning chains
required to answer queries in KB is not too long (restricted to 3 or 4 hops). To test if our model can
learn long reasoning paths, we test our model on a synthetic grid world dataset created by [48]] where
the task is to navigate to a particular cell (answer entity) starting from a random cell (start entity) and
following a set of directions (query relation) (e.g. North, SouthWest). Figure 2 shows the accuracy
on varying path lengths. Compared to NEURALLP, MINERVA is much more robust for queries which
require longer path lengths showing a very little degrade in performance.

4 Related Work

Learning vector representations of entities and relations using tensor factorization [27, 128, 12} 132, 26,
47| or neural methods [37, 140, 43] has been a popular approach to reasoning with a knowledge base.
However, these methods cannot capture more complex reasoning patterns such as those found by
following inference paths in KBs. Multi-hop link prediction approaches [20, 25 |15, 141} [8]] address
the problems above, but the reasoning paths that they operate on are gathered by performing random
walks independent of the type of query relation. Lao et al.,(2011) [20] further filters paths from the
set of sampled paths based on the restriction that the path must end at one of the target entities in the
training set and are within a maximum length. These constraints make them query dependent but
they are heuristic in nature. Our approach eliminates any necessity to pre-compute paths and learns
to efficiently search the graph conditioned on the input query relation.

Inductive Logic Programming (ILP) [24]] aims to learn general purpose predicate rules from examples
and background knowledge. Early work in ILP such as FOIL [30], PROGOL [23] are either rule-
based or require negative examples which is often hard to find in KBs (by design, KBs store true
facts). Statistical relational learning methods [13}[19,135]] along with probabilistic logic [31} 13} 44]
combine machine learning and logic but these approaches operate on symbols rather than vectors and
hence do not enjoy the generalization properties of embedding based approaches.

Neural Theorem Provers (NTP) [33]] and Neural LP [48] are two recent methods in learning logical
rules that can be trained end-to-end with gradient based learning. NTPs are constructed by Prolog’s
backward chaining inference method. It operates on vectors rather than symbols, thereby providing a
success score for each proof path. However, since a score can be computed between any two vectors,
the computation graph becomes quite large because of such soft-matching during substitution step of
backward chaining. For tractability, it resides to heuristics such as only keeping the top-K scoring



proof paths, but it loses any guarantee of computing exact gradients. Also the efficacy of NTPs
has yet to be shown on large KBs. Neural LP introduces a differential rule learning system using
operators defined in TensorLog [6] and has a LSTM based controller and a differentiable memory
component [14}39] and the rule scores are calculated via attention. Even though, differentiable
memory allows the network to be trained end to end, it necessitates accessing the entire memory
which can be computationally expensive. RL approaches which can make hard selection of memory
[50] are computationally attractive. MINERVA uses a similar hard selection of relation edges to
walk on the graph. More importantly, MINERVA outperforms both these methods on their respective
benchmark datasets.

DeepPath [46] uses RL based approaches to find paths in KBs. However, the state of their MDP
requires the target entity to be known in advance and hence their path finding strategy is dependent
on knowing the answer entity. MINERVA does not need any knowledge of the target entity and
instead learns to find the answer entity among all entities. DeepPath, additionally feeds its gathered
paths to Path Ranking Algorithm [20], whereas MINERVA is a complete system trained to do query
answering. DeepPath also uses fixed pretrained embeddings for its entity and relations. Lastly, on
comparing MINERVA with DeepPath in their experimental setting on the NELL dataset, we match
their performance or outperform them. MINERVA is also similar to methods for learning to search
for structured prediction [7, 10l 9, 34} [S]]. These methods are based on imitating a reference policy
(oracle) which make near-optimal decision at every step. In our problem setting, it is unclear what a
good reference policy would be. For example, a shortest path oracle between two entities would be
bad, since the answer providing path should depend on the query relation.

5 Conclusion

As part of this ongoing work, we explored a new way of automated reasoning on large knowledge
bases in which we use the knowledge graphs representation of the knowledge base and train an agent
to walk to the answer node conditioned on the input query. We achieve state-of-the-art results on
multiple benchmark knowledge base completion tasks and we also show that our model is robust and
can learn long chains-of-reasoning. Moreover it needs no pretraining or initial supervision. Future
research directions include applying more sophisticated RL techniques and working directly on
textual queries and documents.
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