
Go for a Walk and Arrive at the Answer:
Reasoning Over Paths in Knowledge Bases with

Reinforcement Learning

Rajarshi Das∗,1, Shehzaad Dhuliawala∗,1, Manzil Zaheer2,4, Luke Vilnis1, Ishan Durugkar3,
Akshay Krishnamurthy1, Alex Smola4, Andrew McCallum1

1University of Massachusetts, Amherst, 2Carnegie Mellon University
3University of Texas at Austin, 4Amazon Web Services

{rajarshi, sdhuliawala, luke, akshay, mccallum}@cs.umass.edu
manzil@cmu.edu, ishand@cs.utexas.edu, alex@smola.org

Abstract

Knowledge bases (KB), both automatically and manually constructed, are often
incomplete — many valid facts can be inferred from the KB by synthesizing
existing information. A popular approach to KB completion is to infer new relations
by combinatory reasoning over the information found along other paths connecting
a pair of entities. Given the enormous size of KBs and the exponential number of
paths, previous path-based models have considered only the problem of predicting
a missing relation given two entities, or evaluating the truth of a proposed triple.
Additionally, these methods have traditionally used random paths between fixed
entity pairs or more recently learned to pick paths between them. We propose a
new algorithm, MINERVA1, which addresses the much more difficult and practical
task of answering questions where the relation is known, but only one entity. Since
random walks are impractical in a setting with combinatorially many destinations
from a start node, we present a neural reinforcement learning approach which
learns how to navigate the graph conditioned on the input query to find predictive
paths. Empirically, this approach obtains state-of-the-art results on several datasets,
significantly outperforming prior methods.

1 Introduction

Automated reasoning, the ability of computing systems to make new inferences from observed
evidence, has been a long standing goal of artificial intelligence. We are interested in automated
reasoning on large knowledge bases (KB) with rich and diverse semantics [38, 1, 4]. KBs are
highly incomplete [22], and facts not directly stored in a KB can often be inferred from those
that are, creating exciting opportunities and challenges for automated reasoning. For example,
consider the small knowledge graph in figure 1. We can infer the (unobserved fact) home stadium of
Colin Kaepernick from the following reasoning path: Colin Kaepernick→ PlaysInTeam→ 49ers→
TeamHomeStadium→ Levi’s Stadium. Our goal is to automatically learn such reasoning paths in
KBs. We frame the learning problem as one of query answering, that is to say, answering questions
of the form (Colin Kaepernick, PlaysInLeague, ?).

From its early days, the focus of automated reasoning approaches has been to build systems which
can learn crisp symbolic logical rules [21, 29]. Symbolic representations have also been integrated
with machine learning especially in statistical relational learning [24, 13, 19, 20], but due to poor
generalization performance, these approaches have largely been superceded by distributed vector
representations. Learning embedding of entities and relations using tensor factorization or neural
methods has been a popular approach (Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013;
inter alia), but these methods cannot capture chains of reasoning expressed by KB paths. Neural
multi-hop models [25, 15, 41] address the aforementioned problems to some extent by operating on
KB paths in vector space. However, these models take as input a set of paths which are gathered by

1https://github.com/shehzaadzd/MINERVA

*The first two authors contributed equally.

https://github.com/shehzaadzd/MINERVA

Colin
Kaepernick

Football

AthletePlays
Sports

Michael
Crabtree

(AthletePlays
Sports)-1

NFL

PlaysinLeague

PlaysinLeague?

49ers

Athlete

PlaysIn

Team

Levis
Stadium

TeamHome
Stadium

 CA
LocatedIn

Milwaukee

 USA

CityIn

 StateIn Player
Home

Stadium?

BornInCity

Nationality?

H
as

S
ta

te
H

as
C

ity

Figure 1: A small fragment of
a knowledge base represented
as a knowledge graph. Solid
edges are observed and dashed
edges are part of queries. Note
how each query (e.g. Nation-
ality, PlaysInLeague, PLayer-
HomeStadium) can be answered
by traversing the graph via “logi-
cal” paths between entity ‘Colin
Kaepernick’ and the correspond-
ing answer.

performing random walks independent of the query relation. Additionally, models such as [25, 8]
use the same set of initially collected paths to answer a diverse set of query types (e.g. MarriedTo,
Nationality, WorksIn etc.).

This paper presents a method for efficiently searching the graph for answer-providing paths us-
ing reinforcement learning (RL) conditioned on the input question, eliminating any need for pre-
computed paths. Given a massive knowledge graph, we learn a policy, which, given the query
(entity1,relation,?), starts from entity1 and learns to walk to the answer node by choosing to take a
labeled relation edge at each step, conditioning on the query relation and entire path history. This
formulates the query-answering task as a reinforcement learning (RL) problem where the goal is to
take an optimal sequence of decisions (choices of relation edges) to maximize the expected reward
(reaching the correct answer node). We call the RL agent MINERVA for ”Meandering In Networks of
Entities to Reach Verisimilar Answers.”

Our RL-based formulation has many desirable properties. First, MINERVA has the built-in flexibility to
take paths of variable length, which is important for answering harder questions that require complex
chains of reasoning [36]. Secondly, MINERVA needs no pretraining and trains on the knowledge
graph from scratch with reinforcement learning; no other supervision or fine-tuning is required
representing a significant advance over prior applications of RL in NLP. Third, our path-based
approach is computationally efficient, since by searching in a small neighborhood around the query
entity it avoids ranking all entities in the KB as in prior work. Finally, the reasoning paths found by
our agent automatically form an interpretable provenance for its predictions.

The main contributions of the paper are: (a) We present agent MINERVA, which learns to do query
answering by walking on a knowledge graph conditioned on an input query, stopping when it reaches
the answer node. The agent is trained using reinforcement learning, specifically policy gradients
(§ 2). (b) We evaluate MINERVA on several benchmark datasets and compare favorably to Neural
Theorem Provers (NTP) [33] and Neural LP [48], which do logical rule learning in KBs. (c) We
also compare to DeepPath [46] which uses reinforcement learning to pick paths between entity pairs.
The main difference is that the state of their RL agent includes the answer entity since it is designed
for the simpler task of predicting if a fact is true or not. As such their method cannot be applied
directly to our more challenging query answering task where the second entity is unknown and must
be inferred. Nevertheless, MINERVA outperforms DeepPath on their benchmark NELL-995 dataset
when compared in their experimental settings.

2 Task and Model

We formally define the task of query answering in a KB. Let E denote the set of entities andR be the
set of binary relations. Then a KB is a collection of facts stored as triplets (e1, r,e2) where e1,e2 ∈ E
and r ∈R. Query answering seeks to answer questions of the form (e1, r,?), e.g. Toronto, locatedIn,
?. We would also like to clearly point out the difference between query answering and the task of
fact prediction. Fact prediction involves predicting if a fact is true or not, e.g. (Toronto, locatedIn,
Canada)?. This task is easier than predicting the correct entity as the answer in query answering
since the latter require finding the answer entity among many possible entities.

Next we describe how we reduce the problem of query answering in a KB to a finite horizon sequential
decision making problem and solve it using reinforcement learning. We begin by representing the

2

environment as a deterministic Markov decision process on a knowledge graph G derived from
the KB (§2.1). Our RL agent is given an input query of the form

(
e1q, rq,?

)
. Starting from vertex

corresponding to e1q in the knowledge graph G, the agent learns to traverse the environment/graph
to mine the answer and stop when it determines the answer (§ 2.2). The agent is trained using
policy gradient more specifically by REINFORCE [45] with control variates (§ 2.3). Let us begin by
describing the environment.

2.1 Environment - States, Actions, Transitions and Rewards

Our environment is a finite horizon deterministic and partially observed Markov decision process
that lies on a knowledge graph derived from the KB. Recall that a KB is collection of facts stored as
triplets (e1, r,e2) where e1,e2 ∈ E and r ∈R. From the KB, a knowledge graph G can be constructed
where the entities s, t are represented as the nodes and relation r as labeled edge between them. Also,
following previous approaches [2, 25, 46], we add the inverse relation of every edge, i.e. for an
edge (e1, r,e2) ∈ E, we add the edge (e2, r−1,e1) to the graph. On this graph we will now specify a
deterministic partially observable Markov decision process, which we elaborate below.

States. The state space consists of all possible query-answers cartesian product with the set of
entities. Intuitively, we want a state to encode the query (e1q, rq), the answer (e2q), and a location of
exploration et (current node of the entity). Thus overall a state is represented by (et,e1q, rq,e2q) and
the state space consists of all valid combinations.

Observations. The complete state of the environment is not observable, but only its current location
of exploration and query can be observed but not the answer, i.e. only (et,e1q, rq) is observed.

Actions. The set of possible actions AS from a state S = (et,e1q, rq,e2q) consists of all outgoing
edges of the vertex et in G and NO-OP. Basically, this means an agent at each state has option to
select which outgoing edge it wishes to take having the knowledge of the label of the edge r and
destination vertex t or just take no action and remain at the current vertex.

Transition. The environment evolves deterministically by just updating the state to the new vertex
pointed by the edge selected by the agent through its action. The query and answer remains the same.

Rewards. We only have a terminal reward of +1 if the current location is the correct answer at the
end and 0 otherwise. To elaborate, if ST = (et,e1q, rq,e2q) is the final state, then we receive a reward
of +1 if et = e2q else 0.

2.2 Policy Network

To solve the finite horizon deterministic partially observable Markov decision process described
above, we aim to design a randomized history-dependent policy π = (d1,d2, ...,dT−1), where dt :
Ht →P(ASt) and history Ht = (Ht−1,At−1,Ot) is just the sequence of observations and actions taken.
We restrict ourselves to the function class expressed by long short-term memory network (LSTM)
[17] for learning the randomized history-dependent policy.

An agent based on LSTM encodes the history Ht as a continuous vector ht ∈ R2d . We also have
embedding matrix r ∈ R|R|×d and e ∈ R|E|×d for the binary relations and entities respectively. The
history embedding for Ht = (Ht−1,At−1,Ot) is updated according to LSTM dynamics:

ht = LSTM(ht−1, [at−1;ot]) (1)

where at−1 ∈ Rd and ot ∈ Rd denote the vector representation for action/relation at time t − 1
and observation/entity at time t respectively and [;] denote vector concatenation. To elucidate,
at−1 = rAt−1 , i.e. the embedding of the relation corresponding to label of the edge the agent chose at
time t−1 and ot = eet if Ot = (et,e1q, rq) i.e. the embedding of the entity corresponding to vertex
the agent is at time t.

Based on the history embedding ht, the policy network makes the decision to choose an action
from all available actions (ASt) conditioned on the query relation. Recall that each possible action
represents an outgoing edge with information of the edge relation label l and destination vertex/entity
d. So embedding for each A ∈ ASt is [rl;ed], and stacking embeddings for all the outgoing edges
we obtain the matrix At. The network taking these as inputs is parameterized as a two-layer feed-
forward network with ReLU nonlinearity which takes in the current history representation ht and the
embedding for the query relation rq and outputs a probability distribution over the possible actions

3

Task Metric Model
ComplEx NTP NTP-λ MINERVA

S1 99.37±0.4 90.83±15.4 100.0±0.0 100.0±0.0
S2 AUC-PR 87.95±2.8 87.4±11.7 93.04±0.4 91±0.01
S3 48.44±6.3 56.68±17.6 77.26±17.0 93±0.01

Table 1: Performance on COUNTRIES dataset. MINERVA significantly outperforms baselines in the
challenging S3 task.

from which a discrete action is sampled. In other words,

dt = softmax(At(W2ReLU(W1 [ht;ot;rq])))

At ∼ Categorical(dt)

Note that the nodes in G do not have a fixed ordering or number of edges coming out from them. The
size of matrix At is |ASt |×2d, so the decision probabilities dt lies on simplex of size |ASt |. Also the
procedure above is invariant to order in which edges are presented as desired and falls in purview of
neural networks designed to be permutation invariant [49]. Finally, to summarise, the parameters of
the LSTM, the weights W1, W2, the corresponding biases (not shown above for brevity), and the
embedding matrices form the parameters θ of the policy network.

2.3 Training

For the policy network (πθ) described above, we want to find parameters θ that maximizes the
expected reward:

J(θ) = E(e1,r,e2)∼DEA1,..,AT−1∼πθ
[R(ST)|S1 = (e1,e1,r,e2)]

where we assume there is a true underlying distribution (e1, r,e2)∼ D. To solve this optimization
problem, we employ REINFORCE [45] as follows:

• The first expectation is replaced with empirical average over the training dataset.
• For the second expectation, we approximate by running multiple rollouts for each training

example. The number of rollouts is fixed and for all our experiments we set this number to 20.
• For variance reduction, a common strategy is to use an additive control variate baseline

[16, 12, 11]. We use a moving average of the cumulative discounted reward as the baseline. We
tune the weight of this moving average as a hyperparameter. Note that in our experiments we
found that learnt baseline performed similarly, but we finally settled for cumulative discounted
reward as the baseline owing to its simplicity.

• To encourage the policy to sample more diverse paths rather than sticking with a few, we add
an entropy regularization term to our cost function after multiplying it by a constant (β). We
treat β as a hyperparameter to control the exploration exploitation trade-off.

Experimental Details We choose the relation and embedding dimension size as 200. The action
embedding is formed by concatenating the entity and relation embedding. We use a 3 layer LSTM
with dimension size of 400. The hidden layer size of MLP (weights W1 and W2) is set to 400. We
use Adam [18] with the default parameters in REINFORCE for the update.

3 Experiments

We test our model on the benchmark datasets of NTP [33]. We also compare those results with
ComplEx [42] and NeuralLP [48]. We also test our model on a large knowledge graph NELL-995 in
the same setting as DeepPath [46]. Lastly, we test our model on a synthetic grid world dataset.

COUNTRIES, KINSHIP, UMLS We first test our model on the COUNTRIES dataset which
is explicitly designed to test the ability of models to learn logical rules. It contains
countries, regions and subregions as entities. The dataset has 3 tasks (S1-3 in ta-
ble 1) each requiring reasoning steps of increasing length and difficulty. We report the
performance of the area under the precision-recall curve (AUC-PR) for the COUNTRIES
dataset. We also compare MINERVA to NeuralLP [48] on the UMLS and KINSHIP datasets.

4

Task DeepPath MINERVA
athleteplaysinleague 0.960 0.970
worksfor 0.711 0.825
organizationhiredperson 0.742 0.851
athleteplayssport 0.957 0.985
teamplayssport 0.738 0.846
personborninlocation 0.795 0.793
athletehomestadium 0.890 0.895
organizationheadquarteredincity 0.790 0.946
athleteplaysforteam 0.750 0.824

Table 2: MAP scores for different query relations on the
NELL dataset. Note that in this comparison, MINERVA
refers to only a single learnt model for all query relations
which is competitive with individual DeepPath models
trained separately for each query relation.

2-4 4-6 6-8 8-10
Path length

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

MINERVA

Neural LP

Figure 2: Grid world experiment:
We significantly outperform Neu-
ralLP for longer path lengths.

Model UMLS KINSHIP
NeuralLP 0.70 0.73
MINERVA 0.91 0.93

Table 3: HITS@10 on UMLS and
KINSHIP

Our experimental settings and scores are directly comparable to
[33] and are reported in table 1. Table 3 reports the results
for UMLS and KINSHIP in which we substantially outperform
NeuralLP.

NELL-995 We also compare MINERVA to DEEPPATH. For a fair comparison, we only rank the
answer entities and the negative examples in the dataset released by them. But unlike them, we train
one model which learns for all query relations. If our model is not able to find the correct entity
or one of the negative entities, the query gets a score of negative infinity. As show in table 2, we
outperform them in most and achieve comparable performance in the rest of the query relations.

GRID WORLD PATH FINDING Noted by previous work [33, 46, 8, 48], often the reasoning chains
required to answer queries in KB is not too long (restricted to 3 or 4 hops). To test if our model can
learn long reasoning paths, we test our model on a synthetic grid world dataset created by [48] where
the task is to navigate to a particular cell (answer entity) starting from a random cell (start entity) and
following a set of directions (query relation) (e.g. North, SouthWest). Figure 2 shows the accuracy
on varying path lengths. Compared to NEURALLP, MINERVA is much more robust for queries which
require longer path lengths showing a very little degrade in performance.

4 Related Work

Learning vector representations of entities and relations using tensor factorization [27, 28, 2, 32, 26,
47] or neural methods [37, 40, 43] has been a popular approach to reasoning with a knowledge base.
However, these methods cannot capture more complex reasoning patterns such as those found by
following inference paths in KBs. Multi-hop link prediction approaches [20, 25, 15, 41, 8] address
the problems above, but the reasoning paths that they operate on are gathered by performing random
walks independent of the type of query relation. Lao et al.,(2011) [20] further filters paths from the
set of sampled paths based on the restriction that the path must end at one of the target entities in the
training set and are within a maximum length. These constraints make them query dependent but
they are heuristic in nature. Our approach eliminates any necessity to pre-compute paths and learns
to efficiently search the graph conditioned on the input query relation.

Inductive Logic Programming (ILP) [24] aims to learn general purpose predicate rules from examples
and background knowledge. Early work in ILP such as FOIL [30], PROGOL [23] are either rule-
based or require negative examples which is often hard to find in KBs (by design, KBs store true
facts). Statistical relational learning methods [13, 19, 35] along with probabilistic logic [31, 3, 44]
combine machine learning and logic but these approaches operate on symbols rather than vectors and
hence do not enjoy the generalization properties of embedding based approaches.

Neural Theorem Provers (NTP) [33] and Neural LP [48] are two recent methods in learning logical
rules that can be trained end-to-end with gradient based learning. NTPs are constructed by Prolog’s
backward chaining inference method. It operates on vectors rather than symbols, thereby providing a
success score for each proof path. However, since a score can be computed between any two vectors,
the computation graph becomes quite large because of such soft-matching during substitution step of
backward chaining. For tractability, it resides to heuristics such as only keeping the top-K scoring

5

proof paths, but it loses any guarantee of computing exact gradients. Also the efficacy of NTPs
has yet to be shown on large KBs. Neural LP introduces a differential rule learning system using
operators defined in TensorLog [6] and has a LSTM based controller and a differentiable memory
component [14, 39] and the rule scores are calculated via attention. Even though, differentiable
memory allows the network to be trained end to end, it necessitates accessing the entire memory
which can be computationally expensive. RL approaches which can make hard selection of memory
[50] are computationally attractive. MINERVA uses a similar hard selection of relation edges to
walk on the graph. More importantly, MINERVA outperforms both these methods on their respective
benchmark datasets.

DeepPath [46] uses RL based approaches to find paths in KBs. However, the state of their MDP
requires the target entity to be known in advance and hence their path finding strategy is dependent
on knowing the answer entity. MINERVA does not need any knowledge of the target entity and
instead learns to find the answer entity among all entities. DeepPath, additionally feeds its gathered
paths to Path Ranking Algorithm [20], whereas MINERVA is a complete system trained to do query
answering. DeepPath also uses fixed pretrained embeddings for its entity and relations. Lastly, on
comparing MINERVA with DeepPath in their experimental setting on the NELL dataset, we match
their performance or outperform them. MINERVA is also similar to methods for learning to search
for structured prediction [7, 10, 9, 34, 5]. These methods are based on imitating a reference policy
(oracle) which make near-optimal decision at every step. In our problem setting, it is unclear what a
good reference policy would be. For example, a shortest path oracle between two entities would be
bad, since the answer providing path should depend on the query relation.

5 Conclusion

As part of this ongoing work, we explored a new way of automated reasoning on large knowledge
bases in which we use the knowledge graphs representation of the knowledge base and train an agent
to walk to the answer node conditioned on the input query. We achieve state-of-the-art results on
multiple benchmark knowledge base completion tasks and we also show that our model is robust and
can learn long chains-of-reasoning. Moreover it needs no pretraining or initial supervision. Future
research directions include applying more sophisticated RL techniques and working directly on
textual queries and documents.

Acknowledgements

This work was supported in part by the Center for Data Science and the Center for Intelligent
Information Retrieval, in part by DARPA under agreement number FA8750-13-2-0020, in part by
Defense Advanced Research Agency (DARPA) contract number HR0011-15-2-0036, in part by the
National Science Foundation (NSF) grant numbers DMR-1534431 and IIS-1514053 and in part by
the Chan Zuckerberg Initiative under the project Scientific Knowledge Base Construction. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.

6

References
[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A

collaboratively created graph database for structuring human knowledge. In ICDM, 2008.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

[3] Matthias Broecheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similarity logic. In
UAI, 2010.

[4] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, Jr., and
Tom M. Mitchell. Toward an Architecture for Never-ending Language Learning. In AAAI, 2010.

[5] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume, and John Langford.
Learning to search better than your teacher. In ICML, 2015.

[6] William W Cohen. Tensorlog: A differentiable deductive database. arXiv preprint
arXiv:1605.06523, 2016.

[7] Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In ACL,
2004.

[8] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural networks. In EACL, 2017.

[9] Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
learning, 2009.

[10] Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. In ICML, 2005.

[11] Michael Evans and Timothy Swartz. Approximating integrals via Monte Carlo and deterministic
methods, volume 20. OUP Oxford, 2000.

[12] George Fishman. Monte Carlo: concepts, algorithms, and applications. Springer Science &
Business Media, 2013.

[13] Lise Getoor and Ben Taskar. Introduction to statistical relational learning. MIT press, 2007.

[14] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv:1410.5401, 2014.

[15] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in vector space. In
EMNLP, 2015.

[16] John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
1997.

[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Stanley Kok and Pedro Domingos. Statistical predicate invention. In ICML, 2007.

[20] Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning in a large
scale knowledge base.

[21] John McCarthy. Programs with common sense. RLE and MIT Computation Center, 1960.

[22] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant supervision
for relation extraction with an incomplete knowledge base. In HLT-NAACL, 2013.

[23] Stephen Muggleton. Inverse entailment and progol. New generation computing, 1995.

[24] Stephen Muggleton, Ramon Otero, and Alireza Tamaddoni-Nezhad. Inductive logic program-
ming. Springer, 1992.

7

[25] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector space
models for knowledge base completion. In ACL, 2015.

[26] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in relational factoriza-
tion models by including observable patterns. In NIPS, 2014.

[27] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, 2011.

[28] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable machine
learning for linked data. In WWW, 2012.

[29] Nils J Nilsson. Logic and artificial intelligence. Artificial intelligence, 1991.

[30] J Ross Quinlan. Learning logical definitions from relations. Machine learning, 1990.

[31] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 2006.

[32] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation extraction
with matrix factorization and universal schemas. In NAACL, 2013.

[33] Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In NIPS, 2017.

[34] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, 2011.

[35] Stefan Schoenmackers, Oren Etzioni, Daniel Weld, and Jesse Davis. Learning first-order horn
clauses from web text. In EMNLP, 2010.

[36] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop
reading in machine comprehension. In KDD, 2017.

[37] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In NIPS, 2013.

[38] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic
knowledge. In WWW, 2007.

[39] Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. End-to-end memory networks. In NIPS,
2015.

[40] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In EMNLP, 2015.

[41] Kristina Toutanova, Victoria Lin, Wen-tau Yih, Hoifung Poon, and Chris Quirk. Compositional
learning of embeddings for relation paths in knowledge base and text. In ACL, 2016.

[42] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In ICML, 2016.

[43] Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth, and Andrew McCallum. Multi-
lingual relation extraction using compositional universal schema. In NAACL, 2016.

[44] William Yang Wang, Kathryn Mazaitis, and William W Cohen. Programming with personalized
pagerank: a locally groundable first-order probabilistic logic. In CIKM, 2013.

[45] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 1992.

[46] Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. In EMNLP, 2017.

[47] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR, 2015.

[48] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for
knowledge base reasoning. 2017.

8

[49] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep sets. 2017.

[50] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines.
arXiv:1505.00521, 2015.

9

	Introduction
	Task and Model
	Environment - States, Actions, Transitions and Rewards
	Policy Network
	Training

	Experiments
	Related Work
	Conclusion

