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Abstract

We consider the challenging problem of entity typing over an extremely fine grained
set of types, wherein a single mention or entity can have many simultaneous and
often hierarchically-structured types. Despite the importance of the problem, there
is a relative lack of resources in the form of fine-grained, deep type hierarchies
aligned to existing knowledge bases. In response, we introduce TypeNet, a dataset
of entity types consisting of over 1941 types organized in a hierarchy, obtained
by manually annotating a mapping from 1081 Freebase types to WordNet. We
also experiment with several models comparable to state-of-the-art systems and
explore techniques to incorporate a structure loss on the hierarchy with the standard
mention typing loss, as a first step towards future research on this dataset.

1 Introduction

Recognizing entities and their types is a core problem in natural language processing, underlying
complex natural language understanding problems in relation extraction (Yaghoobzadeh et al., 2017),
knowledge base construction, question answering (Lee et al., 2006), and query comprehension
(Dalton et al., 2014). Early attempts at entity recognition focused only on very coarse grained types
(Tjong Kim Sang and De Meulder, 2003; Hovy et al., 2006). More recently, there has been growing
interest in models explicitly focused on entity typing with finer grained typesets e.g. FIGER (Ling
and Weld, 2012).

The increasingly sophisticated natural language understanding tasks undertaken by the machine
learning community often require commensurately more sophisticated world knowledge. This world
knowledge, often organized hierarchically in ontologies, motivates our creation of a new fine-grained,
deep, and high-quality dataset of hierarchical types.

Despite the increasing focus on fine-grained typing, existing typesets still contain only on the order
of 100 different types. Further, these typesets are either endowed with only a shallow hierarchy,
typically on the order of two levels deep or don’t have links to existing KBs (see Table 1). In this
work, we advocate for larger, deeper typesets and models that exploit the inherently hierarchical
nature of these types. To this end, we present TypeNet, an expert-annotated type hierarchy containing
1941 individual types, with an average depth of 7.8.

We also evaluate several models for fine-grained entity typing, and establish a strong baseline of
74.8 MAP on the CoNLL-YAGO dataset (Hoffart et al., 2011) for our best model. With each entity
having on the order of 30 types, there are clearly exciting opportunities for improvement from future
research. Additionally, we investigate multi-task models that explicitly incorporate the hierarchical
relations between types into the learning objective.
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Figure 1: Sampled types in the TypeNet hierarchy

2 Dataset Creation

We now discuss TypeNet1, a new dataset of entity types for extremely fine grained entity typing.
TypeNet was created by manually aligning Freebase types to noun synsets from the WordNet hierarchy
(Fellbaum, 1998), naturally producing a hierarchical type set.

This was done by first filtering out all Freebase types that were linked to ≥ 20 entities. We do this to
eliminate extremely fine grained types that are very rare. We follow this by filtering Freebase API
types. This includes types in the domains /freebase,/dataworld,/schema, /atom, /scheme and /topics.

For each Freebase type in our filtered set, we generate a list of candidate WordNet synsets through a
substring match. The annotator then attempted to map the Freebase type to one or more synset in the
candidate list with a parent-of, child-of or equivalence link by examining definitions of each synset
and example entities of the Freebase type. If no match was found, the annotator queried the online
WordNet API until an appropriate synset was found.

This procedure was carried out by two separate annotators independently after which conflicts were
discussed and resolved. The annotators were conservative with assigning equivalence links resulting
in a greater number of child-of links. The final dataset contained 13 parent-of, 727 child-of, and 380
equivalence links. Note that some Freebase types have multiple child-of links to WordNet. Finally, all
the ancestors of the Freebase types (following the manually created child-of and WordNet hypernym
links) were added to construct the dataset.

We also carried out a procedure to add an additional set of 614 FB→ FB links. This was done by
computing conditional probabilities of Freebase types given other Freebase types from a collection of
5 million randomly chosen Freebase entities. The conditional probability P(t2 | t1) of a Freebase type
t2 given another Freebase type t1 was calculated as #(t1,t2)

#t1
. We then threshold these probabilities to

0.7, and manually filter the resulting links.

3 Model

We now describe the various neural models we use for our experiments.

1https://github.com/iesl/TypeNet
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Typeset Count Depth Gold KB links
CoNLL-YAGO 4 1 Yes
Ontonotes 19 1 No
Gillick et al. (2014) 93 3 Yes
Figer 121 2 Yes
Hyena 505 9 No
Freebase 2k 2 Yes
WordNet 16k 14 No
TypeNet 1941* 14 Yes

Table 1: Statistics from various type sets. TypeNet is the largest type hierarchy with a gold mapping
to KB entities. *The entire WordNet could be added to TypeNet increasing the total size to 17k types.

Input Layer: We represent a mention m = ( ~m1, ~m2, ..., ~mn) as a sequence of word vectors
where each vector is of a fixed dimension d. To obtain a mention vector representation, we use a
Convolutional Neural Network (CNN) based architecture. The CNN learns mention representations
from sliding w-gram features of the mention. For a mention m with n tokens represented as vectors,
the CNN outputs n− w + 1 vectors, which are then max-pooled along every dimension to obtain
~mCNN:

~xj = ReLU(~b+

w∑
k=0

W [k :] · ~m[j−w
2 +k]) (1)

~mCNN = max{~x1, ~x2, ..., ~xn−w+1} (2)

where W is a CNN filter of size w × d × d, and ~b is a bias vector of size d. We then concatenate
~mCNN with another vector ~mSFM obtained by averaging the surface form of the entity to which the
mention links. We do this to provide our model explicit signal about the entity present in the mention.
The concatenation is then passed through a series of affine, ReLU and affine transforms to obtain the
final mention representation ~m (See Fig-2):

~mSFM =
1

|t2 − t1 + 1|

k=t2∑
k=t1

~xk (3)

~m =W2(ReLU(W1

[
~mSFM
~mCNN

]
+ b1) + b2) (4)

Loss Function: Like prior work (Shimaoka et al., 2017), we model entity typing as a multi-label
problem, and for a given mention, produce a vector of scores corresponding to each type. We optimize
a mention-typing loss over each minibatch B1 of (m, {ti}) pairs, where {ti} is the set of gold types
annotated for the mention m:

Ltyping =
1

|B1|
∑

(m,{ti})∈B1

( ∑
t∈{ti}

−score(m ∈ t) −
∑

t′ /∈{ti}

score(m /∈ t′)
)

(5)

where score(m ∈ t) is some function indicating the compatibility score for mention m being in type
t, using the interpretation of a type as a set defined by a unary predicate (“has type t”).

In this work, we also introduce a structure loss among the types to incorporate the hierarchy. For this,
we have a separate minibatch B2 of (t, {ta}) pairs, where {ta} is the set of ancestor types for the
type t:

Lstructure =
1

|B2|
∑

(t,{ti})∈B2

( ∑
ta∈{ta}

−score(t ∈ ta) −
∑

t′ /∈{ta}

score(t /∈ t′)
)

(6)

The exact scoring functions used for different models are summarized in Table 2, but are either
variations of binary cross entropy or order embedding loss. We experiment with models whose loss is
either Ltyping alone, or a weighted combination of Ltyping and Lstructure.
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Figure 2: Mention Encoder

Model score(x ∈ y) score(x /∈ y)
Order Embedding -‖max(0, y − x)‖2 max(0, α− ‖max(0, y − x)‖2)
Bilinear log σ(x>Ay) log(1− σ(x>Ay))
Dot log σ(x>y) log(1− σ(x>y))

Table 2: Scoring functions used for modeling type membership, where σ is the logistic sigmoid, and
A is a learned parameter matrix (bilinear form) that scores the asymmetric membership relation.

Hyperparameters: We use pretrained 300 dimensional case sensitive GloVe vectors by Pennington
et al. (2014) and a CNN with a filter width of 5. The type vectors are all 300 dimensional initialized
using Glorot initialization (Glorot et al., 2011). We use dropout (Srivastava et al., 2014) as described
in Fig-2 and optimize using Adam (Kingma and Ba, 2014). We tune our hyperparameters via grid
search and early stopping on the development set.

4 Results

Dataset and Evaluation metrics: To perform our experiments, we use the CoNLL-YAGO (Hoffart
et al., 2011) dev/test split and a subsampled version of Wikipedia (2016/09/20 dump) for training.
We obtain labels for mentions via distant supervision, by assuming as positive types all the TypeNet
types of the entity linked to a mention. We do not perform any heuristic pruning/denoising of these
types, even though not all of them are relevant for a mention. This is because most pruning methods
in literature are either harsh for extremely fine types (Gillick et al., 2014), or did not give an increase
in performance (Shimaoka et al., 2017). However, we plan on improving this in future work and
release a gold test data set.

To obtain the TypeNet types of an entity, we filter out all its Freebase types present in TypeNet, and
finally for every type filtered out, add all its ancestors from TypeNet, giving us an average of 30.73
types per mention, much greater than earlier datasets such as FIGER (GOLD) (Ling and Weld, 2012)
for which the average was 1.73 types per mention.

Since we have on average 30x more types per entities, we use Mean Average Precision (MAP) to
measure performance unlike prior work on fine grained entity typing (Shimaoka et al., 2017). Our
results are summarized in Table 3.

Discussion: We observe that the CNN encoder model works best, and multitasking mention typing
with structure decreases performance if the structure is modeled using a dot product. This is expected
since hypernymy is an asymmetric relation. Furthermore, modeling structure with a bilinear objective
improves performance over a dot product objective but fails to perform better than the regular model.
We believe this is due to the nature of our test data which is made up mostly of leaf type predictions
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Model MAP

Order

Mention 50.2
+structure 50.7
CNN 44.0
+structure 44.6

Bilinear

Mention 70.0
+structure (dot) 69.5
CNN 74.8
+structure (dot) 73.5
+structure (bilinear) 74.8

Table 3: Mean average precision for various models on TypeNet. "Mention" refers to simply averaging
the words of the entity mention surface form. CNN concatenates the mention representations with
a sentence representation. Scores with +structure additionally multi-task the structure loss training
objective.

from a non-diverse set of types (people, locations, and organizations). A more diverse dataset
requiring predictions at different depths of the hierarchy could use this structure more effectively,
since we posit that without using structure, the model will incorrectly predict leaf types when only
parent types are true.

Interestingly, we observe the order embeddings model from Vendrov et al. (2016) to have a poor
performance for our task. We attribute this to the fact that the loss function is poorly suited to
the problem since it uses unrelated concepts as negative examples, which in the traditional order
embedding model actually implies a reversal of the parent-child relation, rather than simply forcing
the types to be unrelated. For example, consider a hypernym link person⇒ organism, and a negative
example, person⇒ stadium. The loss function from Vendrov et al. (2016) attempts to increase the
order violation between person and stadium, making stadium a hyponym of person. We also observe
particularly poor performance combining the order embeddings with the CNN encoder.

5 Related work

Table-1 summarizes existing hierarchical type systems including popular data sets such as FIGER
(Ling and Weld, 2012) and Gillick et al. (2014).

Del Corro et al. (2015) considered the task of extremely fine grained entity typing. They use manually
crafted rules and patterns (Hearst patters, appositives, etc). Hearst (1992) to extract candidate entity
types that match Wordnet synsets. They apply an optional KB type filtering step for entity e by
matching a candidate type tc to any of e’s KB types T if tc is a string match of any ti, hypernym(ti),
or hyponym(ti). We instead manually annotated the exact mapping from 1081 Freebase types to
the specific WordNet synset sense allowing us to leverage distant supervision to trained supervised
classifiers.

The knowledge base Yago (Suchanek et al., 2008) includes integration with WordNet and type
hierarchies have been derived from its type system (Yosef et al., 2012). However the links between
entity types and WordNet types are performed heuristically whereas TypeNet contains gold links
between Freebase and WordNet.

There has been a growing interest in learning representations of hierarchically organized objects.
Vilnis and McCallum (2016) proposed Gaussian embeddings which learn containment properties of
words by approximating them with Gaussian distributions. Vendrov et al. (2016) introduced order
embeddings by minimizing an order violation loss. Recently Nickel and Kiela (2017) proposed
Poincaré embeddings.

6 Conclusion and Future Work

We introduced TypeNet, a human labeled alignment between Freebase entity types and WordNet
synsets. We used this typeset to distantly label the CoNLL-YAGO entity linking dataset and reported
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initial results with several models comparable to the state-of-the-art models previously used on
pre-existing datasets e.g. Shimaoka et al. (2017).

We additionally present results from models incorporating a structure loss over the type hierarchy,
which does not appear to be required by the CoNLL-YAGO dataset, but should be helpful on more
diverse datasets from different domains e.g. ClueWeb, which we will explore in future work and
encourage the community to do the same.

We are exploring more sophisticated methods of incorporating the type hierarchy into the typing loss,
as well as joint models for related tasks such as simultaneous typing and entity linking.

We are excited to see what the community will do with TypeNet, the largest and deepest entity type
hierarchy with manual alignment to Freebase. We hope this will spur improvements in fine-grained
entity and mention typing, linking and associated downstream tasks.

References
Jeffrey Dalton, Laura Dietz, and James Allan. 2014. Entity query feature expansion using knowledge

base links. In Proceedings of the 37th international ACM SIGIR conference on Research &
development in information retrieval. ACM, pages 365–374.

Luciano Del Corro, Abdalghani Abujabal, Rainer Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
Lisbon, Portugal, pages 868–878. http://aclweb.org/anthology/D15-1103.

Christiane Fellbaum. 1998. WordNet. Wiley Online Library.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. CoRR abs/1412.1820. http://arxiv.org/abs/1412.1820.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.
pages 315–323.

Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In Proceedings
of the 14th conference on Computational linguistics-Volume 2. Association for Computational
Linguistics, pages 539–545.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal, Marc
Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. 2011. Robust disambiguation
of named entities in text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, pages 782–792.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel. 2006.
Ontonotes: the 90% solution. In Proceedings of the human language technology conference of
the NAACL, Companion Volume: Short Papers. Association for Computational Linguistics, pages
57–60.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Changki Lee, Yi-Gyu Hwang, Hyo-Jung Oh, Soojong Lim, Jeong Heo, Chung-Hee Lee, Hyeon-Jin
Kim, Ji-Hyun Wang, and Myung-Gil Jang. 2006. Fine-grained named entity recognition using
conditional random fields for question answering. In Asia Information Retrieval Symposium.
Springer, pages 581–587.

Xiao Ling and Daniel S Weld. 2012. Fine-grained entity recognition.

Maximilian Nickel and Douwe Kiela. 2017. Poincar\’e embeddings for learning hierarchical
representations. arXiv preprint arXiv:1705.08039 .

6

http://aclweb.org/anthology/D15-1103
http://aclweb.org/anthology/D15-1103
http://aclweb.org/anthology/D15-1103
http://arxiv.org/abs/1412.1820
http://arxiv.org/abs/1412.1820
http://arxiv.org/abs/1412.1820
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL. pages 1532–1543. http://aclweb.org/anthology/D/D14/D14-
1162.pdf.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and Sebastian Riedel. 2017. Neural architectures for
fine-grained entity type classification. In Proceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics: Volume 1, Long Papers. Association for Com-
putational Linguistics, Valencia, Spain, pages 1271–1280. http://www.aclweb.org/anthology/E17-
1119.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research 15(1):1929–1958. http://dl.acm.org/citation.cfm?id=2670313.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2008. YAGO: A large ontology from
wikipedia and wordnet. J. Web Sem. 6(3):203–217. https://doi.org/10.1016/j.websem.2008.06.001.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-Volume 4. Association for Computational
Linguistics, pages 142–147.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. 2016. Order-embeddings of images and
language. Proceedings of the 2016 Conference on Learning Representations .

Luke Vilnis and Andrew McCallum. 2016. Word representations via gaussian embedding. Proceed-
ings of the 2015 Conference on Learning Representations .

Yadollah Yaghoobzadeh, Heike Adel, and Hinrich Schütze. 2017. Noise mitigation for neural entity
typing and relation extraction. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 1, Long Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 1183–1194. http://www.aclweb.org/anthology/E17-1111.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart, Marc Spaniol, and Gerhard Weikum. 2012.
Hyena: Hierarchical type classification for entity names. Proceedings of COLING 2012: Posters
pages 1361–1370.

7

http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://www.aclweb.org/anthology/E17-1119
http://www.aclweb.org/anthology/E17-1119
http://www.aclweb.org/anthology/E17-1119
http://www.aclweb.org/anthology/E17-1119
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1016/j.websem.2008.06.001
https://doi.org/10.1016/j.websem.2008.06.001
https://doi.org/10.1016/j.websem.2008.06.001
http://www.aclweb.org/anthology/E17-1111
http://www.aclweb.org/anthology/E17-1111
http://www.aclweb.org/anthology/E17-1111

	Introduction
	Dataset Creation
	Model
	Results
	Related work
	Conclusion and Future Work

