
Learning to Organize Knowledge
with N-Gram Machines

Fan Yang William W. Cohen Jiazhong Nie Ni Lao
{fanyang1,wcohen}@cs.cmu.edu {niejiazhong,nlao}@google.com

Carnegie Mellon University, Pittsburgh, PA Google Inc., Mountain View, CA

1 Introduction

Although there is a great deal of recent research on extracting structured knowledge from text [5, 16]
and answering questions from structured knowledge stores [4, 8, 10], much less progress has been
made on the problem of unifying these approaches in an end-to-end model, and removing the
bottleneck of having human experts to design the schema and annotate examples. This paper
considers the problem of treating the schema and the content of a structured storage as discrete hidden
variables in an QA system, and induce these structures automatically from only weak supervisions
such as QA pairs. The structured storage we consider is simply a set of “n-grams”, which can represent
a wide range of semantics, and can be indexed for efficient computations at scale. We present an
end-to-end trainable system which combines an text auto-encoding component for encoding the
knowledge, and a memory enhanced sequence to sequence component for answering questions from
the storage.

1.1 Question Answering As A Testbed for Text Understanding

There is a wide range of text understanding tasks such as machine translation, summarization,
dialogue, and question answering (QA). While it is difficult to quantitatively evaluate performances
for text generation tasks, it is straightforward to evaluate responses to QA tasks [27]. The reminder
of this section analyzes why existing technologies are insufficient to meet its challenges, and outlines
our proposed solution. Before that we define a question answering task more formally as producing
the answer a given sentences s = (s1, . . . , s|s|) and question q. Each sentence si is represented as a
sequence of words, i.e. si = (w1, . . . , wn). And the question q is also represented as a sequence of
words, i.e. q = (w1, . . . , wm). We focus on extractive question answering, where the answer a is
always a word in one of the sentences.

1.2 Text Understanding: Current Practice

In recent years, several large-scale knowledge bases (KBs) have been constructed, such as YAGO [23],
Freebase [2], NELL [16], Google Knowledge Graph [21], Microsoft Satori [19], and others. However,
all of them suffer from a completeness problem [5] – namely to convert arbitrary text to graph
structures that can be used to answer questions. There are two core issues in this difficulty:

The schema (or representation) problem Traditional text understanding approaches need some
fixed and finite target schema [20]. However, there is infinite granularities of semantics that can be
associated with a text expression, but are really hard to predefine manually at scale. It is prohibitively
expensive to have experts to clearly define all these differences as a universal schema, and annotate
enough utterances from which they are expressed. However, given a particular context, the grounding
of these expressions might not even need all these granular supervision. A desirable solution should
induce schema automatically from the corpus such that the groundings can help downstream tasks.

The end-to-end training (or inference) problem The state-of-the-art approaches break down
QA solutions into independent components, such as schema definition and manually annotating



examples [16, 2], relation extraction [15], entity resolution [22], and semantic parsing of questions [1,
10]. However, these components are supposed to work together and depend on each other. Existing
systems [5, 1] leverage human annotation and supervised training for each component separately,
which create consistency issues, and is not directly optimizing the performance of the QA task. A
desirable solution should use less human annotations of intermediate steps, and rely on end-to-end
training to directly optimize the QA quality.

1.3 Text Understanding: Deep Neural Nets

More recently there has been a lot of progress in applying deep neural networks (DNNs) to text
understanding [13, 26, 18, 6, 14]. The key ingredient to these solutions is embedding text expressions
into a latent continuous space. It removes the need of manually deciding schema and greatly simplifies
the design of QA systems, enabling end-to-end training that directly optimizes the QA quality.
However, a key issue that prevent these models to be applied to many applications is scalability.
After receiving a question, all text in a corpus need to be analyzed by the model. Therefore it leads to
at least O(n) complexity, where n is the text size. Approaches which rely on a search subroutine
(e.g., DrQA [3]) lose the benefit of end-to-end training, and are limited by the quality of the retrieval
stage, which itself is as hard as the QA problem.

1.4 N-Gram Machines: A Scalable End-to-End Approach
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Figure 1: End-to-end QA system with a symbolic knowledge store.

We propose to solve the scalability issue of DNN text understanding models by learning to represent
the meaning of text as a symbolic knowledge storage. Because the storage can be indexed before
being used for question answering, the inference step can be done very efficiently with complexity
that is independent of the original text size. More specifically the structured storage we consider
is simply a set of “n-grams”, which we show can represent complex semantics presented in bAbI
tasks [27] and can be indexed for efficient computations at scale. Each n-gram consists of a sequence
of tokens, and each token can be a word, or any predefined special symbol. The whole system
(Figure 1) consists of learnable components which convert text into symbolic knowledge storage and
questions into programs (details in Section 2.1). The whole system is trained end-to-end with no
human annotation other than the expected answers to a set of question-text pairs.

1.5 Related Work

The auto-encoding part of our model (Figure 2) is similar to the text summarization model proposed
by Miao and Blunsom [12]. Our approach differs from Miao and Blunsom [12] in dealing with the
large search space when generating hidden sequences. In particular, we 1) use a less restricted hidden
space (through a CopyNet [7]) by allowing both copied tokens and generated tokens; 2) stabilize the
decoder by forcing it (through experience replay) to train from randomly generated hidden sequences;
and 3) use the log-likelihood of the pre-trained decoder to guide the training of the encoder.

The question answering part of our model (Figure 2) is similar to the Neural Symbolic Machine
(NSM) [10], which is a memory enhanced sequence-to-sequence model that translates questions
into programs in λ-calculus [11]. The programs, when executed on a knowledge graph, can produce
answers to the questions. Our work extends NSM by removing the assumption of a given knowledge
bases or schema, and instead learns to generate storage by end-to-end training to answer questions.
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2 N-Gram Machines

In this section we first describe the N-Gram Machine (NGM) model structure, which contains three
sequence to sequence modules, and an executor that executes programs against knowledge storage.
Then we describe how this model can be trained end-to-end with reinforcement learning.

2.1 Model Structure

Knowledge storage Given a sequence of sentences s = {s1, . . . , sT }, our knowledge storage is a
collection of knowledge tuples Γ = {Γ1, . . . ,ΓT }. The tuple Γi has two parts: a time stamp i and a
sequence of symbols (γ1, . . . , γN ), where each symbol γj is either a word from the sentence si or a
special symbol from a pre-defined set. The time stamps in the tuple are useful for reasoning about
time and are just sentence indices for the bAbI task. The knowledge storage is probabilistic – each
tuple Γi also has a probability, and the probability of the knowledge storage is the product of the
probabilities of all its tuples (Equation 1). An example of a knowledge storage is shown in Table 1.

Table 1: Example of probabilistic knowledge storage. Each sentence may be converted to a distribution
over multiple tuples, but only the one with the highest probability is shown here.

Sentences Knowledge tuples

Time stamp Symbols Probability

Mary went to the kitchen. 1 mary to kitchen 0.9
Mary picked up the milk. 2 mary the milk 0.4
John went to the bedroom. 3 john to bedroom 0.7
Mary journeyed to the garden. 4 mary to garden 0.8

Programs Programs in the N-Gram Machine are similar to those introduced in Neural Symbolic
Machine [10], except that our functions operate on n-grams (i.e. knowledge tuples)1 instead of
Freebase triples. In general, functions specify how symbols can be retrieved from a knowledge
storage. Specifically, a function in NGM use a prefix (or suffix) to retrieve symbols from tuples – i.e.
if a prefix “matches” a tuple, the immediate next symbol in the tuple is returned. For the bAbI tasks,
we define four functions, which are illustrated in Table 2: Function Hop and HopFR return symbols
from all the matched tuples while function Argmax and ArgmaxFR return symbols from the latest
matches (i.e. the tuples with the latest the time stamp in all the matches)

Table 2: Functions in N-Gram Machines. The knowledge storage on which the programs can execute
is Γ, and a knowledge tuple Γi is represented as (i, (γ1, . . . , γN )). “FR” means from right.

Name Inputs Return

Hop v1 . . . vL {γL+1 | if (γ1 . . . γL) == (v1, . . . , vL), ∀Γ ∈ Γ}
HopFR v1 . . . vL {γN−L | if (γN−L+1 . . . γN ) == (vL, . . . , v1), ∀Γ ∈ Γ}
Argmax v1 . . . vL argmaxi{(γL+1, i) | if (γ1 . . . γL) == (v1, . . . , vL), ∀Γi ∈ Γ}
ArgmaxFR v1 . . . vL argmaxi{(γN−L, i) | if (γN−L+1 . . . γN ) == (vL, . . . , v1), ∀Γi ∈ Γ}

Seq2Seq components Our N-Gram Machine uses three sequence-to-sequence [25] neural network
models to define probability distributions over knowledge tuples and programs. As illustrated in
Figure 2, these models are:

• A knowledge encoder that converts sentences to knowledge tuples and defines a distribution
P (Γi|si, si−1; θenc). It is conditioned on the previous sentence si−1 to handle cross sentence
linguistic phenomenons such as co-references2. The probability of a knowledge storage

1We will use “n-gram” and “knowledge tuple” interchangeably.
2Ideally it should condition on the partially constructed Γ at time t− 1, but that makes it hard to do batch

training of the DNN models, and is beyond the scope of this work.
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Γ = {Γ1 . . .Γn} is defined as the product of its knowledge tuples’ probabilities:

P (Γ|s; θenc) = ΠΓi∈ΓP (Γi|si, si−1; θenc) (1)

• A knowledge decoder that converts tuples back to sentences and defines a distribution
P (si|Γi, si−1; θdec). It enables auto-encoding training, which is crucial for finding good
knowledge representations.

• A programmer that converts questions to programs and defines a distribution
P (C|q,Γ; θprog). It is conditioned on the knowledge storage Γ for code assistance [10] –
before generating each token the programmer can query Γ about the valid next tokens given
a tuple prefix, and therefore avoid writing invalid programs.

can be followed by      or   
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Function
Word
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Reward

Expected 
Answer

Execute (no learning)

Structure Tweak:

Story

Question

Code assist:

Reconstruction loss

Reconstruction

Messages

Executor

Knowledge 
Decoder

Knowledge 
Encoder

Programmer

Figure 2: N-Gram Machine. The model contains two discrete hidden structures, the knowledge
storage and the program, which are generated from the story and the question respectively. The
executor executes programs against the knowledge storage to produce answers. The three learnable
components, knowledge encoder, knowledge decoder, and programmer, are trained to maximize the
answer accuracy as well as minimize the reconstruction loss of the story. Code assist and structure
tweak help the knowledge encoder and programmer to communicate and cooperate with each other.

2.2 Inference and Optimization

Given an example (s, q, a) from our training set, we would like to maximize the expected reward

OQA(θenc, θprog) =
∑
Γ

∑
C

P (Γ|s; θenc)P (C|q,Γ; θprog)R(Γ, C, a), (2)

where the reward function R(·) returns 1 if executing C on Γ produces a, and 0 otherwise. We
approximate the expectation with beam searches – the summation over all programs is replaced by
summing over programs found by beam search based on the programmer model P (C|q,Γ; θprog).
For the summation over knowledge storages Γ, we first run beam search for each sentence based
on the knowledge encoder model P (Γi|si, si−1; θenc), and then sample a set of knowledge storages
by independently sampling from the knowledge tuples of each sentence. However, since the beam
searches explore exponentially large spaces, it is very challenging to optimize OQA. We introduce
two special techniques to iteratively reduce and improve the search space:

Stabilized Auto-Encoding (AE) We add an auto-encoding objective to our framework, similar to
the text summarization model proposed by Miao and Blunsom [12]. The training of this objective
can be done by variational inference [9, 17]:

OVAE(θenc, θdec) = Ep(z|x;θenc)[log p(x|z; θdec) + log p(z)− log p(z|x; θenc)], (3)

where x is text, and z is the hidden discrete structure. However, it suffers from instability due to the
strong coupling between encoder and decoder – the training of the decoder θdec relies solely on a
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distribution parameterized by the encoder θenc, which changes throughout the course of training. To
improve the auto-encoding training stability, we propose to augment the decoder training with a more
stable objective – predict the data x back from noisy partial observations of x, which are independent
of θenc. More specifically, for NGM we force the knowledge decoder to decode from a fixed set of
hidden sequences z ∈ ZN (x), which includes all knowledge tuples of length N that consist of only
words from the text x:

OAE(θenc, θdec) = Ep(z|x;θenc)[log p(x|z; θdec)] +
∑

z∈ZN (x)

log p(x|z; θdec), (4)

The knowledge decoder θdec converts knowledge tuples back to sentences and the reconstruction
log-likelihoods approximate how informative the tuples are, which can be used as reward for the
knowledge encoder. We also drop the KL divergence (last two terms in Equation 3) between language
model p(z) and the encoder, since the z’s are produced for NGM computations instead of human
reading, and do not need to be in fluent natural language.

Structure Tweaking (ST) Even with AE training, the knowledge encoder is encoding tuples with-
out the understanding of how they are going to be used, and may encode them inconsistently across
sentences. At the later QA stage, such inconsistency can lead to no reward when the programmer
tries to reason with multiple knowledge tuples. To retrospectively correct the inconsistency in tuples,
we apply structure tweak, a procedure which is similar to code assist [3], but works in an opposite
direction. While code assist uses the knowledge storage to inform the programmer, structure tweak
adjusts the knowledge encoder to cooperate with an uninformed programmer. Together they allow
the decisions in one part of the model to be influence by the decisions from other parts – similar in
spirit to the Markov chain Monte Carlo (MCMC) methods.

Because the knowledge storage and the program are non-differentiable discrete structures, we optimize
our objective by a coordinate ascent approach – optimizing the three components in alternation with
REINFORCE [28].

3 Results

bAbI The bAbI dataset contains twenty tasks in total. We consider the subset of them that are
extractive question answering tasks. Each task is learned separately. For all tasks, we set the
knowledge tuple length to three. In Table 3, we report results on the test sets. NGM outperforms
MemN2N [24] on all tasks listed. The results show that auto-encoding is essential to bootstrapping
the learning. Without auto-encoding, the expected rewards are near zero; but auto-encoding alone is
not sufficient to achieve high rewards (See Section 2.2). Since multiple discrete latent structures (i.e.
knowledge tuples and programs) need to agree with each other over the choice of their representations
for QA to succeed, the search becomes combinatorially hard. Structure tweaking is an effective way
to refine the search space – improving the performance of more than half of the tasks.

Table 3: Test accuracy on bAbI tasks with auto-encoding (AE) and structure tweak (ST)

Task 1 Task 2 Task 11 Task 15 Task 16

MemN2N 1.000 0.830 0.840 1.000 0.440
QA 0.007 0.027 0.000 0.000 0.098
QA + AE 0.709 0.551 1.000 0.246 1.000
QA + AE + ST 1.000 0.853 1.000 1.000 1.000

Table 4 lists sampled knowledge storages learned with different objectives and procedures. Knowledge
storages learned with auto-encoding are much more informative compared to the ones without. After
structure tweaking, the knowledge tuples converge to use more consistent symbols – e.g., using went
instead of back or travelled. Our experiment results show the tweaking procedure can help NGM
to deal with various linguistic phenomenons such as singular/plural (“cats” vs “cat”) and synonyms
(“grabbed” vs “got”).

Life-long bAbI To demonstrate the scalability advantage of the N-Gram Machine, we conduct
experiments on question answering data where the number of sentences may increase up to 10 million.
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Table 4: Sampled knowledge storage with question answering (QA) objective, auto-encoding (AE)
objective, and structure tweak (ST) procedure. Using AE alone produces similar tuples to QA+AE.
The differences between the second and the third column are underlined.

QA QA + AE QA + AE + ST

went went went daniel went office daniel went office
mary mary mary mary back garden mary went garden
john john john john back kitchen john went kitchen
mary mary mary mary grabbed football mary got football
there there there sandra got apple sandra got apple

cats cats cats cats afraid wolves cat afraid wolves
mice mice mice mice afraid wolves mouse afraid wolves
is is cat gertrude is cat gertrude is cat

More specifically we generated longer bAbI stories using the open-source script from Facebook3. We
measure the answering time and answer quality of MemN2N [24]4 and NGM at different scales. The
answering time is measured by the amount of time used to produce an answer when a question is
given. For MemN2N, this is the neural network inference time. For NGM, because the knowledge
storage can be built and indexed in advance, this is the programmer decoding time.

Figure 3 compares MemN2N and NGM. In terms of answering time, MemN2N scales poorly – the
inference time increases linearly as the story length increases. While for NGM, the answering time
is not affected by story length. The crossover of the two lines is when the story length is around
1000, which is due to the difference in neural network architectures – NGM uses recurrent networks
while MemN2N uses feed-forward networks. To compare the answer quality at scale, we apply
MemN2N and NGM to solve three life-long bAbI tasks (Task 1, 2, and 11). For each life-long task,
MemN2N is run for 10 trials and the test accuracy of the trial with the best validation accuracy is
used. For NGM, we use the same models trained on regular bAbI tasks. We compute the average
and standard deviation of test accuracy from these three tasks. MemN2N performance is competitive
with NGM when story length is no greater than 400, but decreases drastically when story length
further increases. On the other hand, NGM answering quality is the same for all story lengths. These
scalability advantages of NGM are due to its “machine” nature – the symbolic knowledge storage
can be computed and indexed in advance, and the program execution is robust on stories of various
lengths.

Figure 3: Scalability comparison of MemN2N and NGM. Left: Answering time. Right: Answer
quality. Story length is the number of sentences in each QA pair.

3https://github.com/facebook/bAbI-tasks
4https://github.com/domluna/memn2n
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