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Abstract

Multilingual knowledge graph embeddings provide important latent semantic
representations for knowledge-driven cross-lingual NLP tasks. Learning such
embeddings is currently based on the training of a weakly supervised alignment
model in joint with monolingual knowledge models. However, existing techniques
for alignment model suffer significantly from the multilingual inconsistency of
knowledge graphs. In this paper, we propose an improved model by learning a
generalized affine-map-based alignment model. We find that the proposed approach
effectively addresses the limitations of existing approaches, especially in handling
the incoherence of embedding spaces on different languages. Experimental results
show that the proposed approach offers better performance for both entity and
triple-wise knowledge alignment tasks.

1 Introduction

Knowledge bases (KBs) like ConceptNet [19], WordNet [2], and DBpedia [14] constitute essential
sources of knowledge. These KBs store knowledge graphs (KGs) that represent two aspects of
knowledge: the monolingual knowledge which models relation facts of entities as triples, and the
cross-lingual knowledge that synchronizes monolingual knowledge among various human languages.

Embedding models for monolingual KGs have been extensively studied in the past half decade. These
models provide efficient and versatile methods to infuse the symbolic knowledge of KGs into machine
learning, by encoding entities in low-dimensional embedding spaces, and supporting relational
inferences between entity embeddings via simple vector algebra. For example, the translation-based
model TransE [3] represents a relation as the vector translation between two entities, and quantifies
the semantic relatedness of entities as vector distance. Models of this kind have been widely applied
to NLP-related tasks, such as KG completion [15], relation extraction [23], question answering
(QA) [5], and visual semantic labeling [8].

Recently, embeddings have been leveraged to connect the KGs of multiple languages [6]. This
advancement is significant as it provides KG embeddings with generic multilinguality despite the fact
that cross-lingual knowledge usually covers small parts of the KG. This undoubtedly benefits vast
NLP tasks such as knowledge alignment, cross-lingual QA, and machine translation [7]. Successful
learning of such embeddings is qualified by two model components. A knowledge model (KM)
distributes knowledge of each language in a separated embedding space. On top of that, an alignment
model (AM) learns cross-lingual transitions without losing the encoded monolingual structures,
for which existing models employ several techniques, including joint techniques based on axis
calibration, translation vectors, and linear transforms [6], as well as off-line maps [20], and parameter
sharing [26].

Although effective, the alignment techniques in existing models still suffer significantly from the
inconsistency of multilingual KGs. This is because language-specific versions of the KG are usually
extended asynchronously [14, 22]. Therefore, the vocabulary of entities and relations, and the relation
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facts are very inconsistent, which easily lead to the incoherence of embedding spaces for involved
language (as shown in Fig. 1). We find off-line techniques and parameter sharing to be ill-suited
when facing this issue. Although joint techniques adapt well to the incoherence, we show that current
forms of alignment models are still hindered by the conflict between accurate cross-lingual transitions
and embedding normalization.

In this paper, we propose MTransE-Af , a simple but effective model, which enhances MTransE [6]
with a more generalized affine-map-based AM. We find that the affine map efficaciously addresses the
limitations of previous techniques for handling the multilingual inconsistency. We evaluate MTransE-
Af on entity and triple-wise cross-lingual knowledge alignment tasks using three benchmark datasets
of trilingual KGs. Experimental results confirm the effectiveness of MTransE-Af by offering notably
better performance than previous models on the cross-lingual tasks.

2 Related Work

KG embedding models are first explored in the monolingual scenario. Previous works have made
significant advances on translation-based models. To characterize a triple (h, r, t) where r is a
relation between entities h and t, the forerunner TransE [3] of this family follows the objective
h+ r ≈ t by representing r as a translation between entity vectors h and t. Following TransE, later
works such as TransH [24], TransR [15], TransD [11], and TransA [12] differentiate such encoding
process to separated embedding spaces using different forms of relation-specific projections, and offer
better performance on KG completion and relation extraction tasks. In addition to these, there are
non-translation-based models, including successful neural models such as RESCAL [17], HolE [16],
and ComplEx [21]. These models perform comparably to translation-based models at the cost of
higher model complexity.

To perform multilingual learning on KGs, MTransE [6] connects monolingual models with a jointly
trained alignment model, for which three aligment techniques are employed, i.e., axis calibration
that adjusts embedding spaces to collocate cross-lingual counterparts (MTransE-AC), cross-lingual
vector translation (MTransE-TV), and linear transforms across embedding spaces (MTransE-LT) for
different languages. The MTransE-LT thereof achieves the best performance on knowledge alignment
tasks. JAPE is introduced in [20] which strengthens the alignment learning of MTransE-AC based on
identical entity attributes. This model performs well on KBs that provide entity attributes, though
such attributes are not generally available in many KBs such as ConceptNet and WordNet. Another
relevant model ITransE [26] enforces parameter sharing on aligned entities. ITransE has been used to
align entities for monolingual KGs where vocabularies and relation facts are very coherent. Though
it can be used for multilingual learning, we find this strict technique does not adapt well to the
substantially inconsistent multilingual scenario. Note that, projection-based models for words, i.e.
LM, CCA [9], and joint orthogonal transforms OT [25] can also be extended to KGs, but have been
outperformed by MTransE-LT on cross-lingual tasks.

3 Multi-graph Affinity Embeddings

We follow the definition of multilingual KGs in [6]. In a KB, L denotes the set of languages, and L2

denotes unordered language pairs. For each L ∈ L, GL denotes the language-specific KG of L, and
EL and RL respectively denote the corresponding vocabularies of entities and relations. T = (h, r, t)
denotes a triple in GL such that h, t ∈ EL and r ∈ RL. Boldfaced h, r, t respectively represent
the embedding vectors of head h, relation r, and tail t. For (L1, L2) ∈ L2, δ(L1, L2) denotes the
alignment set which contains a small portion of already-aligned triple pairs between L1 and L2. For
each GL, a k-dimensional embedding space RkL is assigned for vectors of EL and RL, for which R
is the field of real numbers.

3.1 Knowledge Model

KM preserves each language version of KG in a separated embedding space. Like previous works [6,
20, 26], we employ TransE as KM:

SK =
∑

L∈{Li,Lj}

∑
(h,r,t)∈GL

‖h+ r− t‖
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r1: capital
r2: major city

h: Republic of Italy

t1: Rome

t2: Florence

English

r′1: hauptstadt
r′2: großstadt

h′: Republik Italien

t′1: Rom

t′2: Florenz

German

h′←Mijh

t′1←Mijt1

t′2←Mijt2

Figure 1: 3D PCA projection of MTransE-LT trained on WK3l-15k, which shows incoherence of the embedding
spaces of English and German. In both embedding spaces, entity vectors are normalized to the unit hypersphere,
whereas entity counterparts are embedded incoherently, and involved relation counterparts are captured with
very unequal l2 norms (‖r1‖ = 0.33, ‖r′1‖ = 0.59, ‖r2‖ = 0.49, ‖r′2‖ = 0.19).

Unlike other translation-based models, TransE benefits cross-lingual tasks by representing embed-
dings uniformly in different contexts of relations. Although neural models like RESCAL and HolE
may be used as well, in this paper, we choose to keep SK as a controlled variable and focus on
improving SA (Alignment Model). Like MTransE, SK does not adopt negative sampling, as we find
it does not contribute to cross-lingual tasks.

Note that KM enforces norm contraint such that the l2-norm of any entity vector is 1. This is an
important constraint to prevent the learning process from reaching a trivial solution where all vectors
collapse to zero, and is widely enforced by MTransE, other KG embeddings [10, 4, 3, 5, 21, 20], and
multilingual word embeddings [25, 1].

3.2 Alignment Model

It is important for AM to be general as needed to capture well the comprehensive transitions between
incoherent embeddings of cross-lingual counterparts. We have already discussed that, MTransE-LT
learns a linear transform Mij jointly with KM, such that Mijx ≈ x′ given (x, x′) as a pair of
counterpart entities in Li and Lj . As embedding vectors are normalized, it is easy to show that Mij is
expected to become a linear isometry. This technique outperforms the others due to higher generality.
This also explains why, if we constrain Mij to be orthogonal (OT), the performance of the model
becomes worse as it is shown in Section 4.

However, we argue that, the AM adopted by MTransE-LT should be further generalized, as it lacks
the ability to model various forms of invertible transforms, such as translation and scaling. The
limitation of this technique hinders the precision of cross-lingual transitions, as an example is shown
in Fig. 1 with a conflict on the embedded counterpart triples (h, r1, t1) and (h′, r′1, t′1). Because
Mijh ≈ h′ and Mijt ≈ t′, we have Mij(h − t) ≈ h′ − t′, i.e. Mijr1 ≈ r′1 according to SK .
Since Mij is expected to be isometry, ‖r′1‖ ≈ ‖Mijr1‖ = ‖r1‖ is conflict to the observation where
‖r1‖ and ‖r′1‖ are largely unequal. Such conflicts also occur to r2 and r′2, as well as all relation
counterparts for which we observe a mean deviance of l2-norm that is as large as 0.38.

We hence define AM with a more generalized affine map as below.

σij(x) = Aijx+ bij s.t.Aij ∈ Rk×k, bij ∈ Rk

The score function of AM is given as,

SA =
∑

(T,T ′)∈δ(Li,Lj)

Sa(T, T
′)

for which the alignment score Sa is defined as below, where σeij and σrij are the entity and relation-
dedicated affine maps respectively.

Sa =
∥∥σeij(h)− h′

∥∥+ ∥∥σrij(r)− r′
∥∥+ ∥∥σeij(t)− t′

∥∥
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Table 1: Statistics on the datasets. Two versions of WK3l are Wikipedia-based and CN3l is ConceptNet-based.
Each dataset has small portions of alignment sets between English-French and English-German, and extra entity
inter-lingual links (ILLs) to evaluate entity matching.

Dataset #En triples #Fr triples #De triples #Align triples #ILLs

WK3l15k 203,502 170,605 145,616 Fr&En:16,470
De&En:37,170

Fr-En:3,815
De-En:1,610

WK3l120k 1,376,011 767,750 391,108 Fr&En:124,433
De&En:69,413

Fr-En:41,513
De-En:5,921

CN3l 47,696 18,624 25,560 Fr&En:3,668
De&En:8,588

Fr-En:2,146
De-En:3,813

Table 2: Cross-lingual entity matching result.

Dataset CN3l WK3l-15k WK3l-120k
Language Fr-En De-En Fr-En De-En Fr-En De-En
Metrics H@1H@10MeanH@1H@10MeanH@1H@10MeanH@1H@10MeanH@1H@10H@1H@10

LM 2.52 20.16 1884.7 1.49 18.04 1487.9 1.56 10.42 3661.0 0.38 15.21 6114.1 1.02 14.26 0.34 13.58
CCA 3.81 26.40 1204.9 3.03 25.30 1740.8 3.78 19.44 3017.9 3.56 22.30 5855.6 1.60 12.85 1.62 20.39
OT 49.77 67.06 42.3 58.23 72.34 33.9 33.27 40.92 461.2 39.07 49.24 145.5 27.15 37.19 28.43 34.21

ITransE 67.56 71.19 186.2 67.80 84.01 107.6 55.33 58.42 690.2 41.39 52.3 127.1 26.79 38.09 49.47 50.57
MTransE-AC 30.04 69.27 55.2 19.37 63.56 33.6 22.21 46.64 436.5 25.53 50.60 167.0 9.54 36.52 23.17 47.79
MTransE-TV 41.05 77.02 29.3 39.21 70.96 14.8 7.57 36.44 464.6 29.86 52.16 151.8 11.49 36.45 34.99 52.24
MTransE-LT 80.57 86.05 16.6 77.92 95.67 7.8 58.78 61.52 199.6 63.58 68.53 42.3 38.98 47.43 58.31 67.75
MTransE-Af 83.17 86.94 16.9 96.72 98.25 1.76 59.73 65.07 181.3 73.96 75.41 15.34 39.78 49.25 66.79 74.56

The affine map is strong enough to model almost all regular forms of invertible vector transforms [13].
It is able to tolerate the vector differences of relation counterparts with a translation component, and
does not require Mij to be isometry. The affine map effectively enhances cross-lingual transitions for
both entities and relations, as shown in the experiments.

3.3 Training

Training MTransE-Af is to minimize J = SK + αSA via on-line SGD, for which α is a hyperparam-
eter. We initialize all vectors with uniform distribution on a unit hypersphere, and all matrices with
random orthogonal initialization [18].

4 Experiments

In this section, we evaluate the proposed model on two cross-lingual tasks first introduced in [6]:
cross-lingual entity matching, and triple alignment verification. Results are reported on three trilingual
datasets as shown in Table 1.

4.1 Cross-lingual Entity Matching

The objective of this task is to match the same entities from different languages in KB. The ILLs
are used as test cases, on which we aggregate three metrics, i.e. precision H@1 (%), the proportion
of ranks no larger than 10 H@10 (%), and mean rank Mean . Higher H@1 and H@10, and lower
Mean indicate better outcomes.

MTransE-Af is compared against LM, CCA, OT, and three MTransE variants using the same settings
in [6], as well as ITransE which enforces iterative parameter sharing between two TransE. To evaluate
all models under controlled variables, for each dataset, we apply the configuration of MTransE to
all models. In detail, we fix α = 5, l2 norm for all settings, while we use learning rate λ = 0.001
on CN3l, λ = 0.01 on WN3l datasets. k is set as 50, 75, 100 respectively on CN3l, WK3l15k, and
WK3l120k. Norm threshold is set as θ = 1.0 for ITransE to extend alignment seeds. Training is
limited to 400 epochs on WK3l datasets and 200 epochs on CN3l.

Results are reported in Table 2. As expected, other baselines are substantially outperformed by the
more flexible MTransE-LT. Between English-German graphs, MTransE-Af outperforms the results
of MTransE-LT with 18.8%, 10.38%, and 8.48% increment of accuracy, as well as notably higher
H@10 and lower Mean . The English-French settings are more consistent, and we see increments
of accuracy ranging from 0.80% to 2.60%. In conclusion, the affine-map-based AM effectively
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Table 3: Accuracy of triple alignment verification (%).
Dataset CN3l WK3l15k WK3l120k

Language Fr&En De&En Fr&En De&En Fr&En De&En
LM 60.53 51.55 52.23 63.61 59.98 59.98

CCA 81.57 79.54 52.28 66.49 65.89 61.01
OT 93.01 87.59 93.20 87.97 88.65 85.24

ITransE 76.40 78.35 89.45 87.87 81.77 82.54
MTransE-AC 93.92 91.89 93.25 91.24 91.27 91.35
MTransE-TV 88.95 84.80 90.38 84.24 87.99 87.04
MTransE-LT 97.46 96.63 94.58 95.03 93.48 93.06
MTransE-Af 98.19 97.13 98.75 99.34 95.67 95.31

Table 4: Results of tail and relation prediction
(H@10).

Predict Tail Relation
Language En Fr En Fr

TransE 42.19 25.06 61.79 62.55
MTransE-AC 40.37 23.45 60.18 60.73
MTransE-TV 40.97 22.26 58.32 59.44
MTransE-LT 41.03 25.46 63.74 64.77
MTransE-Af 42.07 29.91 62.42 66.87

improves cross-lingual matching of entity embeddings, and is more capable of handling multilingual
inconsistency.

4.2 Triple Alignment Verification

This task is to produce a binary classifier to verify the correctness of triple alignments. We follow the
steps in previous works, to create positive cases by isolating 20% of the alignment set, and corrupt
the positive cases by (i) randomly replacing one of the six elements, or (ii) randomly substituting one
of the two triples with a false alignment. Cases (i) and (ii) contribute negative cases that are as many
as 100% and 50% of positive cases respectively. We use 10-fold cross-validation to train and evaluate
a simple classifier that finds a threshold τ on the dissimilarity score Sa (Section 3.2) for a given
triple alignment, for which Sa < τ implies positive, otherwise negative. The value of τ is decided by
maximizing the accuracy on the training cases. This simple classifier requests the embedding model
to precisely represent cross-lingual transitions for the entire triples. Model configurations from the
pervious experiment are carried forward to evaluate under controlled variables.

Table 3 reports the results. Although MTransE-LT has already shown satisfying results that are
better than the rest models, MTransE-Af further increases the accuracy by 0.50%-0.73% on CN3l,
4.17%-4.31% on WK3l15k, and 2.19%-2.25% on WK3l120k. This indicates that the enhancement
by the affine map on learning cross-lingual transitions is effective on both entities and relations.

4.3 Monolingual Tasks

Besides the above two tasks, we also evaluate MTransE-Af on monolingual tasks of tail prediction
(i.e. predicting t given h and r) and relation prediction (predicting r given h and t) using the English
and French versions of WK3l15k. Like previous works, [3, 24, 12], for each language version, 10%
triples are selected as the test set, and the remaining becomes the training set. We compare with
TransE and MTransE on these two tasks. For training, MTransE-Af and MTransE variants are trained
upon both language versions of the training set for the knowledge model, while the intersection
between the alignment set and the training set is used for the alignment models. TransE is trained
separately on each training set.

The results for H@10 reported in Table 4 show that MTransE-Af performs at least as well as MTransE
variants and its monolingual counterpart TransE, and even better in some cases due to the correlation
of the two languages. This indicates that MTransE-Af preserves well the structure of monolingual
KGs, and affine-map-based AM does not interfere the learning of KM.

5 Conclusion and Future Work

In this paper, we have proposed a multilingual KG embedding model, which addresses the limitations
of previous models in handling the multilingual inconsistency of KGs by introducing a generalized
affine-map-based alignment technique. Experimental results show the effectiveness of the model for
both entity and triple-wise knowledge alignment, and precise encoding of monolingual knowledge.
For future work, we plan to strengthen the weakly supervision of multilingual learning process with
more information, such as text and structural entity descriptions.
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