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Abstract

We consider the task of learning extractors for knowledge base relations from
little training data. This learning setup, also referred to as one-shot learning,
is challenging for models that assume the availability of substantial amounts of
training data from which to learn patterns that can generalize to unseen instances
at test time. Nevertheless, it is also of practical importance, as many real-world
knowledge bases are incomplete, and need to be extended to new relations for
which there are typically limited learning examples. Previous work proposed
the use of logic rules combined with matrix factorization in order to improve
predictive accuracy when only a few training examples are available. In this work,
we instead propose and show how explicit modeling of contextual patterns, within
a factorization machine-based model, can be effectively utilized for this task. We
test our approach on a standard relation extraction dataset, and find that with
limited training data, our approach obtains relative improvements of more than
3% points in area under the weighted Mean Average Precision (wMAP) curve,
compared to state-of-the-art approaches that utilize matrix factorization combined
with additional supervision signals in the form of propositional logic rules.

1 Introduction

Extracting the relations between entities of interest plays a useful role in many natural language
understanding systems, including those used for various tasks such as question answering and
automatic knowledge base population, resulting in several methods and techniques being used for
this task (Zelenko, Aone, and Richardella, 2003; Culotta and Sorensen, 2004; Bunescu and Mooney,
2006; Mintz et al., 2009; Surdeanu et al., 2012; Riedel et al., 2013).

Riedel et al. (2013) for instance, proposed an approach based on matrix factorization. This approach
casts the problem of extracting relations between entities as one of link prediction over a universal
schema consisting of the union of surface patterns, knowledge base (KB) relations and entities. In
this framework, facts from the knowledge base stipulating that a certain relation holds among two
entities provide supervision signal for learning relation extractors.

However, the need often arises in practice to learn extractors for new relations for which there is
limited training data, as is the case when a knowledge base needs to be extended to new relations for
which there are only a few known facts. This learning setting, where a model is allowed access to
limited learning instances per class, has also been referred to as one-shot learning (Miller, Matsakis,
and Viola, 2000; Fei-Fei, Fergus, and Perona, 2006).

In order to learn extractors for knowledge base relations for which there is limited existing training
data, we propose and evaluate the use of contextual patterns, which we define as the surface patterns
which co-occur with knowledge base entities within a corpus of text. We learn embeddings for these
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patterns and knowledge base relations jointly within the framework of a Factorization Machine (FM)
model.

Our contributions are twofold: (i) We demonstrate that by jointly modeling the correlations between
knowledge base relations and contextual patterns in a single framework, we are able to exploit
information which is readily available in the text and achieve superior accuracy, without making use
of additional human supervision in the form of propositional rules, as is the case in current approaches
(ii) We present evaluations showing that the proposed approach leads to improved area under the
weighted Mean Average Precision (wMAP) curve, when compared to state-of-the-art approaches.

2 Background

2.1 One-shot Learning

The notion of one-shot learning, which has also been explored in computer vision (Miller, Matsakis,
and Viola, 2000; Fei-Fei, Fergus, and Perona, 2006), is used to describe the learning setting where
the model is required to generalize from one or few example instances per class. This is a realistic
scenario when there are classes for which training data is limited, for instance when having to learn a
classifier for a new type of object in computer vision or when a knowledge base needs to be extended
to new relations for which limited learning examples are available. In contrast with the zero-shot
learning (Larochelle, Erhan, and Bengio, 2008) setting, where the model is not allowed any labeled
examples, one-shot allows for one or few example labels per class. We consider the one-shot learning
setting to be realistic, as limited supervision can often be easily obtained for new classes, for instance
by asking the user to provide some examples for the new relation.

In a similar vein, bootstrapped learning approaches, for instance Carlson et al. (2010), learn extractors
for different relations starting from a few initial seeds as training data. Learning then proceeds
in several rounds, by progressively re-training extractors with the union of the previous training
instances and the current model predictions on unlabeled data. However, such approaches are often
troubled by the noise in the model predictions, a phenomenon referred to as semantic drift (Curran,
Murphy, and Scholz, 2007).

2.2 Factorization Machines (FM)

Rendle (2010) proposed factorization machines in the context of recommender systems as a way to
learn effective scoring functions with sparse inputs, in order to assess how likely is that a user-item
combination occurs in reality. More concretely, a FM of order 2 models the scoring of a possibly
sparse, real-valued input feature vector f ∈ <d according to the following equation:

s(f) =

d∑
m=1

bmfm +

d∑
m=1

d∑
n=m+1

〈φm, φn〉fmfn (1)

The first summand is a linear model, where each feature fm is weighted by a corresponding feature
weight bm ∈ <. The second summand captures the interaction between all possible feature pairs under
a low-rank assumption. Each feature fm has a corresponding embedding φm ∈ <k with k << d,
and the interaction between two features is captured via their dot product 〈φm, φn〉 multiplied by the
product of their values in the instance fmfn.

While FM models have been explored for relation extraction by Petroni, Del Corro, and Gemulla
(2015) and Weibl, Bouchard, and Riedel (2016), their effectiveness was not investigated within the
context of limited supervision data.

2.3 Relation Extraction with Universal Schemas

Universal Schema (Riedel et al., 2013) is an approach to relation extraction that jointly embeds
surface patterns, knowledge base relations and entities in a common embedding space through matrix
factorization. It sidesteps the problem of aligning relations to sentences from the training corpus,
which can lead to semantic drift in distantly supervised relation extraction approaches. It achieves
this by performing joint inference across surface patterns, knowledge base relations and entities.
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Rocktäschel, Singh, and Riedel (2015) and Demeester, Rocktäschel, and Riedel (2016) inject prior
knowledge in the form of logical rules to improve relation extraction learning for new relations with
zero or few training labels. While their experiments were also carried out within the framework of
universal schema-based relation extraction, they considered the use of propositional logic rules, which
for instance, can be mined from external knowledge bases (which are often incomplete themselves),
obtained from a domain expert or from ontologies such as WordNet (Miller, 1995) (both of which may
not be readily available, especially for a new domain). We instead investigate the use of information
which is available from the text itself, and does not require consulting any additional external data
sources to obtain.

Figure 1: Input observations as a matrix with contextual pattern information. Each row (f1, f2, f3, ...)
represents a (candidate) fact. The surface patterns have been simplified from their lexicalized
dependency representations for readability.

3 Proposed Approach

Let T andR be the set of entity pairs and relations respectively, whereR is the union of KB relations
and surface patterns S. We represent a fact as a triple (r, t, ct) consisting of a relation r ∈ R, an
entity pair t ∈ T and a vector of counts of contextual patterns ct ∈ S. The contextual pattern ct
vector represents the counts of surface patterns that have been observed together with tuple t in a text
corpus, normalized to sum to one. We generate f , a fact’s feature vector, by concatenating vectors
encoding each of r,t and ct.

The contextual patterns can be thought of as indicators of the textual contexts in which t is likely
to be found. By explicitly modeling the contextual patterns we are able to capture the correlations
between them and the KB relations. The contextual patterns not only provide evidence of the surface
patterns that are descriptive of the entity pair in the text corpus, but crucially, they allow the model to
learn which combinations of surface patterns are indicative of certain knowledge base relations. This
enables the model to draw on statistical evidence from surface patterns across a text corpus in order
to derive more reliable estimates for the interaction factors of relations. This also gives us the benefit
of making the most of surface relations, which are easily obtained but noisy, to learn with very few
annotation labels for relations. We can thus exploit any abundant text resource (the web, for instance)
to learn relation extractors with very few supervision labels from the KB for a new relation.

For instance, the first row in Figure 1 represents that the tuple Paris,France was observed with the
surface relation “is a city in” and that the same tuple was observed with two contextual patterns, “is a
city in” and “is a part of”, hence each of them have a value of 0.5. Similarly, the sixth row represents
that the same tuple Paris,France has the KB relation is_the_capital_of. This allows the model to
learn the interaction between the surface patterns “is a city in” and “is a part of” and the KB relation
is_the_capital_of more reliably. Furthermore, consider that we want to predict which is a more
likely entity tuple between London, United Kingdom and London, France for the knowledge base
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relation “is_located_in“. Observe that the tuples London, United Kingdom and Paris, France have
more contextual pattern overlap than the tuple London, France. The proposed approach would be
aware of such correlations to give a higher score for the fact (London,is_located_in,United Kingdom)
than (London,is_located_in,France).

We next describe how we model the score of fact candidates with a factorization machine model. We
encode the relation r and tuple t as one-hot feature vectors of dimensionality |R| and |T | respectively.
The feature vector f is made up of the one-hot encoded KB relations/surface patterns, entity tuples
and contextual patterns. However, most of the surface patterns in each contextual pattern have 0
value, hence f is very sparse. We exploit this in order to accelerate the computation of Equation 1 for
a candidate fact by ignoring the features with value of 0 and considering only the active ones A and
their corresponding vector representations, which yields the following scoring function for a fact:

s(f) =
∑
a∈A

bafa +
∑

a∈A,a′∈A\a

〈φa, φa′〉fafa′ (2)

3.1 Objective Formulation

Given a text corpus, we aim to extract relations between entities of interest, with limited training
data from the knowledge base and learn a model that can differentiate between true and false facts,
i.e. assign high scores to the former and lower scores to the latter using equation 2. However, only
examples of observed true relations between entities (positive facts) are available at training time. In
order for the model to effectively discriminate between positive and negative facts, it needs to have
also seen examples of negative facts. One way to achieve this is to treat observed relations as true facts
and all unobserved relations between entities as false facts. However since the facts we seek to extract
are unobserved, this carries the risk that we treat plausible relations between entities as negative,
which can consequently lead to inferior model performance. Following previous work (Riedel et
al., 2013; Petroni, Del Corro, and Gemulla, 2015), we make use of an alternative approach, which
is to instead treat unobserved facts as unknowns, and left for the model to infer. This is achieved
using a ranking-based objective, which optimizes to rank observed facts higher that unobserved ones.
Concretely, we make use of the Bayesian Personalized Ranking (BPR) (Rendle et al., 2009) objective,
which optimizes to maximize difference between the score of observed and unobserved facts. Given
a set of observed F+ and unobserved F− facts, we estimate model parameters Θ that satisfy the
following objective:

arg min
Θ

−
∑

f+∈F+

f−∈F−

log
(

1 + eδ(f
+,f−)

)
+ λ‖Θ‖2 (3)

where δ(f+, f−) = s(f+) − s(f−) and λ is a regularization hyper parameter. The objective (3)
essentially maximizes the difference δ(f+, f−) between the scores of observed and unobserved facts.

Note that the set F− is unobserved and is generated automatically from F+ by random sampling.
Specifically, in each iteration and for every positive fact f+ in the current batch, we fix the relation r
and randomly select an entity pair t′ ∈ E, such that the triple (r, t′, ct

′
) has not been observed.

4 Training and Evaluation

For all experiments, we make use of a latent dimension size of 100, L2 regularization penalty of 0.01,
and ran our model for 1000 epochs. Our system is implemented in Tensorflow (Abadi et al., 2015),
and uses Adam (Kingma and Ba, 2014) for optimization, with a learning rate of 1× 10−4 and batch
size of 1024. We sample one unobserved fact at random per positive fact during training.

We make use of the same evaluation setup as Riedel et al. (2013), by retrieving for each relation the
top 1000 entity tuples from each system, the top 100 of which is pooled and manually annotated.
These provided a set of results that is used to compute precision measures for each system. We
computed Mean Average Precision (MAP) and weighted Mean Average Precision (wMAP) for each
run. While MAP computes the expectation of average precision scores across all the relations for each
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(a) (b)

Figure 2: (a) : One-shot comparison between two model variants : without contextual pattern
embeddings (FM) and with contextual pattern embeddings (FMC). (b) : One-shot comparison of
model FMC with previous work. Results obtained from Demeester, Rocktäschel, and Riedel (2016).

system, weighted MAP takes into account the number of true facts for each relation in computing
this expectation.

5 Experiments and Results

For our experiments, we make use of the dataset of Riedel et al. (2013), which consists of data from
the New York Times (NYT) corpus (Sandhaus, 2008). The corpus has been preprocessed with a named
entity recognizer and the entities have been linked, where possible, with their corresponding Freebase
(Bollacker et al., 2008) entities. The shortest dependency path between each pair of entities in a
sentence has also been extracted as the surface pattern.

In the one-shot experiments, we perform evaluations with a fraction τ ∈ [0, 0.5] of the training labels
for each relation. We make use of the same dimensionality for the embeddings and the same pre-
processing (named entity recognition and linking, syntactic parsing) as the approaches we compare
with in order to ensure a fair comparison.

Figure 2a presents the results of one-shot experiments for the model that utilizes contextual pattern
information (FMC), and a variant of it that does not (FM). The figure shows that the difference in
performance between models FMC and FM is wider when less supervision data is available. These
results demonstrate that the contextual pattern information in model FMC enhanced its performance
when less supervision labels are available.

Figure 2b presents results of model (FMC) compared to state-of-the-art models from Rocktäschel,
Singh, and Riedel (2015) (R15-Joint) and Demeester, Rocktäschel, and Riedel (2016) (D16-FSL). Our
approach does not make use of any rules as extra supervision data, and this affected its performance
in the zero-shot setting. Nevertheless, it was still able to obtain better coverage, as measured by
the wMAP AUC, despite not using any extra supervision. This is because it was able to utilize the
contextual pattern representations to better model the relationship between entities, thus requiring
less supervision.

In order to assess how well model FMC generalizes to the fully supervised setting, we also perform
a diagnostic experiment making use of the full training set. Results of this experiment as shown
in Table 1 for several models from the literature (M09: Mintz et al. (2009), Y11: Yao, Riedel, and
Mccallum (2011), S12: Surdeanu et al. (2012), R13-*: Riedel et al. 2013). We observe that model
FMC compares favorably with other the models in this setting as well, demonstrating the usefulness
of explicit modeling of contextual patterns in both the limited and full supervision settings.
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Relation # M09 Y11 S12 R13-N R13-F R13-NF R13-NFE FMC
person/company 104 0.67 0.63 0.69 0.72 0.75 0.75 0.78 0.80
location/containedby 75 0.48 0.51 0.53 0.42 0.68 0.66 0.68 0.68
person/nationality 30 0.13 0.38 0.12 0.13 0.18 0.18 0.20 0.20
author/works_written 29 0.50 0.51 0.52 0.45 0.61 0.63 0.69 0.67
parent/child 19 0.14 0.25 0.62 0.46 0.76 0.78 0.76 0.79
person/place_of_death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86 0.83
person/place_of_birth 18 0.78 0.75 0.82 0.50 0.83 0.81 0.89 0.81
neighborhood/neighborhood_of 12 0.00 0.00 0.08 0.43 0.65 0.66 0.72 0.62
person/parents 7 0.24 0.27 0.58 0.56 0.53 0.58 0.39 0.56
company/founders 4 0.25 0.25 0.53 0.24 0.77 0.80 0.68 0.67
film/directed_by 4 0.06 0.15 0.25 0.09 0.26 0.26 0.30 0.07
sports_team/league 4 0.00 0.43 0.18 0.21 0.59 0.70 0.63 0.48
team/arena_stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08 0.09
team_owner/teams_owned 2 0.00 0.50 0.70 0.55 0.38 0.61 0.75 0.63
roadcast/area_served 2 1.00 0.50 1.00 0.58 0.58 0.83 1.00 0.58
structure/architect 2 0.00 0.00 1.00 0.27 1.00 1.00 1.00 1.00
composer/compositions 2 0.00 0.00 0.00 0.50 0.67 0.83 0.12 0.83
person/religion 1 0.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00
film/produced_by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33 1.00
MAP 0.32 0.42 0.55 0.45 0.61 0.66 0.63 0.65
Weighted MAP 0.48 0.51 0.56 0.52 0.66 0.66 0.68 0.68

Table 1: Results using the full training dataset. The # column is the number of true facts in the test
pool. Winners are in bold, tied winners in italics.

6 Conclusion

We considered the task of learning to extract relations with few annotated labels. We proposed a
model that utilized contextual patterns, which is readily available within the text itself. We showed
that our approach improved in extraction accuracy compared to previous approaches. While we have
represented each surface pattern within a contextual pattern with a single low-rank representation, a
future direction for our work is investigating the use of compositional representations for the surface
patterns, which have been shown to lead to better modeling of knowledge base relations (Toutanova
et al., 2015; Verga et al., 2016). To encourage further work in this area, we make our code and data
publicly available1.
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