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Abstract

Automatic lifestyle profiling to categorize users according to their daily routine-
based lifestyles is an unexplored area. Despite the current trends on having wearable
devices that generate large amounts of heterogeneous data, figuring out the lifestyle
patterns of people is not a trivial task. We present Lifestyles-KG, a knowledge
graph (fuzzy ontology) for semantic reasoning from wearable sensors. It can serve
as a pre-processing taxonomical step that can be integrated into further prediction
techniques for intuitively categorizing fuzzy lifestyle concepts, treats or profiles.
The ultimate aim is to help tasks such as long-term human behavior classification
and consequently, improve virtual coaching or customize lifestyle recommendation
and intervention programs from free form non-labelled sensor data.

1 Introduction

Over the last decade a number of technologies have been developed that support individuals in
keeping themselves active. This can be done via e-coaching mechanisms and by installing more
advanced technologies in their homes.

This paper presents an ontology that allows to describe the lifestyle of a user given its digital
footprints such as wrist-born activity trackers, GPS and mobile phone applications such as Moves2.
The ontology includes concepts such as height, weight, locations, cholesterol, sleep, activity levels,
activity energy expenditure, heart rate, or stress levels, among many other aggregated features. Its
purpose is serving application development in Ambient Intelligence scenarios ranging from activity
monitoring in smart homes to active healthy aging or lifestyle profiling.

The proposed ontology is a fuzzy version and augmentation of the wearables ontology in [17]. In this
occasion, the fuzzy datatypes (ranges of the data properties) are learned from real data using clustering.
This step can be seen as an extension to include in the fuzzy DL-Learner3 tool. In particular, we
consider fuzzy EL(D)4 concept descriptions (lifestyles) that explain sufficient conditions for being an

∗Work done during internship at Philips Research
2https://moves-app.com/
3http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner/index.html
4The basic elements of DLs are concept descriptions (in First-Order Logic terminology, unary predicates),

inheritance relationships among them and instances of them. The standard language for ontology representation
OWL 2 has three sublanguages with a polynomial time reasoning complexity (http://www.w3.org/TR/
owl2-profiles). OWL 2 EL is a fragment that is particularly useful in applications employing ontologies
that contain very large numbers of properties and/or classes; OWL 2 QL is designed to enable easier access
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instance of such class according to the values of the datatype properties. Given a set of day (segments)
records from digital traces such as sleep and activity sensors, the ontology serves to provide intuitive
lifestyle treats categorizations. The definition of such categorizations is another contribution of the
present work. The rest of this paper is structured as follows. Section 2 summarizes related approaches
to ontological lifestyle profiling and description logics (DL) learning tools, Section 3 explains the
learning methodology used, Section 4 describes the ontology proposed and Section 5 concludes the
paper and discusses future work.

2 Related Work

2.1 Lifestyle profiling from digital traces and wearable sensors

Lifestyle can be defined as a collection of routines and behaviors shaped by the social, economic, and
environmental structure around a person. In a computational application the behaviors are represented
by measurements from wearable sensors. The lifestyle of an individual can then be modeled by the
statistics of the measurements conditioned by the elements of the surrounding structure. A model
of a lifestyle can be discovered blindly from the data using clustering methods or it may be based
on matching a pre-defined semantic template to the data. [18] proposed a blind method to model
routines as linear combinations of eigenbehaviors. The use of blind modeling is difficult because
the discovered routines lack semantics that is needed to provide understandable feedback to the user.
The lifestyle model proposed in [39] was based on matching a semantic template of workday and
weekend routines to the wearable data. Semantic template models have also been used for mining
personalized insights from wearable sensor data [24] to attach semantics to recurring ambulatory
patterns [22].

Semantically meaningful and interpretable models to better understand the underlying statistics of
individual lifestyle patterns of people is not a trivial task because of the variability of the individuals.
Even if technology allows for a broad spectrum of sensors, it is not straight-forward to choose the most
appropriate data acquisition, data imputation and data fusion techniques [29]. Attention should also
be put into semantic definitions in order to achieve matching of lifestyle coaching programs, to target
compatible profiles (i.e., accounting for the user’s devices -and their metric units-, their diseases,
time schedules and hobbies). Common-sense representation can enhance data-driven processes
and improve accuracy and precision of recognition in human activities [16, 15, 13]. Likewise,
knowledge-driven human activity models can be upgraded through data-driven learning techniques
[3, 2] improving accuracy and clustering techniques.

2.2 Knowledge Graph unsupervised learning with fuzzy Description Logics

FOIL(First-order Inductive Learning) is a rule-based learning algorithm [30]. Related FOIL-like
algorithms for the fuzzy case are reported in the literature [14, 33, 34] but they are not conceived for
DL ontologies (see [36] for a discussion).

In the context of DL ontologies, DL-FOIL adapts FOIL to learn crisp OWL DL equivalence axioms
under Open World Assumption (OWA)5 [19]. Fuzzy DL-Learner supports the same learning problem
as in DL-FOIL but implements algorithms that are not based on FOIL [23]. [10] combine a refinement
operator for EL++ with a reinforcement learning algorithm and [25] can learn fuzzy OWL DL
equivalence axioms from FuzzyOWL 2 ontologies 6 by interfacing the fuzzyDL reasoner [7].

[27] is the closest tool to DL-learner and presents FOIL-DL, a FOIL variant for fuzzy and crisp DLs.
However, the fuzzy probabilistic ensemble of fuzzy concept description candidates of DL-Learner
proves more effective and furthermore, it does not face problems of other learners such as providing
a mapping from fuzzy DLs to logic programming that is incomplete or its entailment can become
undecidable [36].

and query to data stored in databases; and OWL 2 RL is a rule subset of OWL 2. The logic EL(D) is closely
related to OWL 2 EL.

5Under OWA (Open World Assumption), E− consists of all those individuals which can be proved to be
instance of ¬T , while under CWA (Closed World Assumption) E− consists of those individuals which cannot be
proved to be instance of T .

6http://www.straccia.info/software/FuzzyOWL
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3 Methods: Fuzzy Description Logics, OWL and pFOIL Fuzzy DL-Learner

Fuzzy Description Logics (DLs) is a well-known family of logics for knowledge representation.
They are the main formalism used to represent fuzzy ontologies; for example, the logical counterpart
of the language Fuzzy OWL 2 is a fuzzy DL [6]. The fact of being fuzzy allows them to handle
incomplete, imprecise or vague information. Fuzzy DLs have been used in a unlimited set of scenarios
[35], principally, in Semantic Web applications or in distributed information retrieval to help in the
integration of deep web resources [8], making heterogeneous information not only machine readable
but also meaningful. The advantage of using DLs is the interpretability and readability of the concept
definitions.

Fuzzy DL-Learner is an automatic learning system for OWL 2 ontologies. Given an OWL 2 ontology,
it allows to learn graded OWL 2 descriptions of a target class in terms of specific inclusion axioms
expressed in OWL EL, in which fuzzy concepts and fuzzy datatypes may occur, such as High Sleep
Quality or Very low number of steps/calories [36]. Fuzzy DL-Learner extends FOILalgorithm in
[28]; it takes as input a crisp OWL ontology and can compute among others, fuzzy DLs datatypes
via c-means7 using various parameters, e.g., number of clusters, etc. Fuzzy DL-Learner allows to
improve the readability of characterizations such as Mediterranean-napper, Bar-Lover, Gym-Addict,
Night-Owl or Sportive-Commuter. It also permits to define the so-called fuzzy concept descriptions
[36] such as a Dutch-luncher as a "worker that often takes sandwiches for lunch while walking along
the lake", or a Mediterranean-Luncher as a person that "takes lunch at Mediterranean-lunch-time
with long-lunch-duration". Here, the concept Long-Lunch-Duration is a so-called fuzzy concept [41],
i.e. a concept for which the belonging of an individual to the class is not necessarily a binary yes/no
question, but rather a matter of degree.

Fuzzy DL-Learner uses pFOIL-DL, a method for the automated induction of fuzzy EL(D) concept
descriptions by adapting the popular rule induction method FOIL [30]. But, unlike FOIL, in which the
goodness of an induced rule is evaluated independently of previously learned rules, fuzzy DL-learner
evaluates the goodness of a candidate in terms of the ensemble of so far learned rules, in a similar
way as it happens in nFOIL [26]. However, when there are not enough examples of instances of
a class, this learning technique is not appropriate. This happens for example in our case, where
we have a lot of data property assertions (values of attributes for different people) but not a lot of
class assertions (categorization of people as members of a concept). To overcome this situation, we
implement clustering algorithms to learn the fuzzy datatypes.

4 Lifestyles-KG: a fuzzy ontology for lifestyle profiling

The percentage of day time spent doing certain activity can provide a pretty good idea of the person’s
type of lifestyle. However, the locations where a person spends his time, and the amount of times or
frequency with which a person performs an activity or visits a place (supermarket, gym, doctor, library
or theatre) can as well show great insights about a lifestyle. Lifestyle profiles can be formalized by
using 4 different types of features or dimensions: time based features (in a [0,1] ratio per day-segment
unit), clock features (i.e., start timestamp and duration), frequency (e.g., amount of steps or average
nr. of key places visited in a commute), and location (lat. and longitude) features.

Table 1: Excerpt of sensor input data modeling and handling

Day Segment Feature Description /Unit
Id Day segment
StartT, EndT start, end time [min]
Steps count
Calories count
Max, Mean HR heart rate
Walking, Cycling, Running, Transport R time ratio [0,1]
Cycling, Running, Transport and Walking distance in m
Lunch walk steps count in [11,13] PM

7in the yet unpublished latest version
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The basic unit in which a day footprint is divided into is a day segment. Fixed day segments by clock
0-6, 6-12, 12-18, 18-24h exists, although regular ones such as morning (the time between waking up
and going to work) are based on behaviour sensing. They are provided with start and end time -in
minutes-, each of them divided into:

• Home, H – All places user calls ‘Home’ or where the user is last thing in the evening and
first thing in the morning.

• Work, W – All places the user calls ‘Work’, ‘Philips’, ‘HTC’ or where the user regularly
commutes to and from or is in the middle of a weekday.

• Key points, K – Frequented places in W <–> H transfers where the user regularly stops at
(kindergarten, supermarket, fitness centre). K has no loops.

• Other places, O - All other places that users visit either from H or W. These will often be
more sporadically visited places, such as restaurants, theaters, museums or other cities.

A Knowledge Graph (KG) in form of ontology contains concepts, individuals (concept instances) and
relations in form of data and object properties. General lifestyle profile concepts in Lifestyles-KG
include Sedentary, Active, POI-Frequent-Visitor, Always-Late, while more fine-grained lifestyles
contained are Shopaholic, Kindergarden visitor, Bar Lover, etc. Each of these concepts’ typical
numerical values might be learned using fuzzy DL-Learner. Because the data is not provided with
lifestyle labels, we apply clustering over the 40 records of volunteers of middle age living in the
Eindhoven area (The Netherlands).

4.1 Machine learning workflow for fuzzy datatype learning

The long term goal is learning the rules, e.g. as general concept inclusions (GCIs); however, we
start learning what the fuzzy DLs state of the art permits at the moment, i.e., fuzzy datatypes. The
procedure followed for designing and learning the ontology datatypes is the following:

1. Manual design (e.g., using NeON methodology [37]) of a crisp ontology by the domain
data scientists (together with diet and specialists that monitor cardiac disease patients),
accounting for features of interest to perform queries on.

2. Use a learning algorithm to obtain from real data a fuzzy ontology that is consistent, non-
redundant, sound, and complete [36]. The input is a crisp OWL ontology (.owl). The output
is a fuzzy ontology which can be exported into Fuzzy OWL 2 [6] or into the fuzzyDL syntax
(.fdl) for fuzzyDL reasoner[7]8 to be able to perform reasoning, e.g., with queries such as
max-satisfiability degrees of individuals belonging to a given concept or satisfaction degree
of axioms in a KB among others. See Table 2 for an excerpt of the fuzzyDL ontology and
examples of queries.

(a) We start by selecting a set of target atomic (in our case, lifestyle) concepts T for which
one would like to learn classification rules.

(b) If we have enough examples of instances of T , we can use fuzzy DL-Learner to
obtain the rules. In particular, it provides fuzzy EL(D) GCIs axioms of the form
“C1 u . . .u Cn v T ”, where each Ci is either an atom A, or an existential restriction
(objectProperty some C), (datatypeProperty some d), where d is a fuzzy membership
function learned from data. Given the target concept name T , the training set E consists
of crisp concept assertions of the form a:T where a is an individual occurring in K.

(c) If we do not have enough examples of instances of T , we use clustering algorithms
such as k-means, fuzzy c-means or mean shift in order to learn fuzzy membership
function values for each datatype that appears as a possible range of the attributes
(data properties) for the instances of T . This is actually our case, thus in the following,
we focus on learning the fuzzy datatypes (future work will add learned CGIs to the
ontology).

8http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html
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% Concrete concepts (concrete features are generally a subset of all properties/relations)
(define-primitive-concept DaySegment *top* )
(define-primitive-concept NightAndMorning DaySegment)
(define-primitive-concept CommuteToWork WeekdaySegment)
(define-primitive-concept AtWork WeekdaySegment)
(define-primitive-concept CommuteSegment (g-or CommuteToWork CommuteToHome))
(define-primitive-concept OutHomeSegment (g-or AtWork CommuteToHome CommuteToWork DayTime ))
(define-primitive-concept NotHomeNorWorkSegment (g-or CommuteToHome CommuteToWork DayTime ))

% Axioms expressing concrete features or datatypes’ range
(range hasStartT *integer* 0 1440) # in min
(range hasLunchStartT *integer* 0 1440 )
(range walkedNStepsAtLunch *integer* 0 999999)
(range spentNCalories *integer* 0 999999 )
(range hasMaxHR *integer* 0 1000)

% Fuzzy datatypes (define-fuzzy-concept HighHR right-shoulder (30, 300, 85, 100))
(define-fuzzy-concept LowHR left-shoulder (30, 300, 50, 62))
(define-fuzzy-concept GymSessionDuration trapezoidal (0, 1440, 15, 20, 45, 90))
(define-fuzzy-concept MediterraneanLunchStartT trapezoidal (0, 1440, 690, 720, 780, 830)) # 11.30, 12, 13, 13.30 am
(define-fuzzy-concept MediterraneanJobStartT trapezoidal (0, 1440, 360, 420, 480, 540)) # 6, 7, 8, 9 am

% Definition of lifestyle fuzzy concepts (actual definitions corresponding to rules)
(define-concept DutchLuncher (g-and AtWork (some walkedNStepsAtLunch HighNSteps)(some hasLunchStartT Dutch-
LunchStartT)(some hasLunchDuration DutchLunchDuration) (some spentNCalories MediumCalorieCountMan)))
(define-concept MediterraneanLuncher (g-and AtWork (some walkedNStepsAtLunch LowNSteps)(some hasLunch-
StartT MediterraneanLunchStartT)(some hasLunchDuration MediterraneanLunchDuration) (some spentNCalories
LowCalorieCountMan)))
(define-concept DutchWorker (g-and AtWork (some hasEndT DutchJobEndT)(some hasStartT DutchJobStartT )))
(define-concept MediterraneanWorker (g-and AtWork (some hasEndT MediterraneanJobEndT)(some hasStartT Mediter-
raneanJobStartT)))
(define-concept EarlyBird (g-and NightAndMorning (some hasEndT VeryEarlyLeaveHomeTime)(some hasStartT
EarlyArriveHomeTime)))
(define-concept Sedentary (g-and DaySegment (some hasMaxHR LowHR ) (some hasAvgHR LowHR) (some spent-
NCalories LowCalorieCountMan) (some walkedNSteps LowNSteps) (some hasWalkingDistance ShortWalkingDistance)
(some hasWalkingR LowWalkingR) (some hasCyclingDistance ShortCyclingDistance) (some hasCyclingR LowCy-
clingR) (some hasTransportDistance LongTransportDistance) (some hasTransportR HighWalkingR)))

% Input axioms to the Knowledge Base: Location-based Day Segment for e.g., tm (this morning)
(define-fuzzy-concept startT_tm crisp(0,1440,0,0))
(define-fuzzy-concept nCalories_tm crisp(0,1440,0,0))
(define-fuzzy-concept maxHR_tm crisp(0,1440,0,0))
(define-fuzzy-concept transportDistance_tm crisp(0,1440,0,0))
(define-fuzzy-concept cyclingR_tm crisp(0,1440,0,0))

% Input instances (individuals) (define-concept day1segment1 (g-and NightAndMorning (= hasStartT 0) (= hasEndT
519) (= walkedNSteps nSteps_tm) (= walkedNStepsAtLunch 0) (= spentNCalories 0)

% Queries: max. satisfiability of matching footprint day1segment1 with each lifestyle profile (LP)
(max-sat? (and GymAddict day1segment1))
(max-sat? (and DutchLuncher day1segment1))

Table 2: Lifestyles-KG ontology, a profile library (excerpt of ontology and rules in fuzzyDL).
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4.2 Learning fuzzy datatypes
We use unsupervised learning algorithms to cluster real data values of the data properties. The result
of our application is an array of k centroids (one per cluster) from which we compute the fuzzy
membership functions of the fuzzy datatypes. We implemented k-means, fuzzy c-means, and mean
shift clustering algorithms. Some advantages of our approach are its independence of the application
domain and not requiring any manual intervention. In the case of mean-shift no parameters are
required; the other algorithms require to fix a priori the number of clusters k.

K-means groups a set of n data xj into k clusters described by means of their centroids ci [5]. The
algorithm starts by computing randomly the k initial centroids ci. Then, it repeats two steps: first,
each point xi is assigned to its nearest centroid ci according to the Euclidean distance. Second,
the centroids ci are updated by minimizing a square error function. The algorithm finishes when a
stopping criteria is met (total iteration number or no changes in centroids).

Fuzzy c-means [4] is an extension where every point can belong to several clusters with different
degrees of membership. This algorithm is more robust to the random initialization of the centroids.

Mean-shift [9, 11] is widely used in clustering but also in image segmentation. It seeks modes or
local maxima of density in a feature space by computing a mean-shift vector. The algorithm defines a
window around each point, computes the mean of the data points in the window and then shifts its
center to the mean. It uses a Gaussian Kernel Kg to keep track of the nearest neighbors of each xi

according to a bandwidth or window size h. To compute the bandwidth we use the rule of thumb
proposed in [38]. This rule can be used to compute a quick estimation of h for a given Kg , and allows
to define a local seeking distance l = h

2 . At the end of the process, the mean-shift vector converges
into a set of centroids after removing data points at a too close distance.

5 Conclusions and Future work
We proposed Lifestyles-KG, a Knowledge Graph that can learn his original data properties in terms of
descriptive fuzzy EL(D) sub-concepts. The fuzzy datatypes in our fuzzy ontology were automatically
learnt from data records using clustering algorithms. Our learning strategy is complementary to the
existing implementation of the fuzzy DL-Learner and could be used to extend the tool. Lifestyles-KG
models heterogeneous sensor data from a large variety of wearable (sleep, HR, GSR) sensors, phone
apps and scales, etc. The ontology, both in crisp and fuzzyDL syntax is available online9.

This work focuses on learning fuzzy datatypes; however, future work should aim at automatizing a
larger part of the KB design procedure, e.g., learning concepts and sub-concepts, as well as relations
and their cardinality, functionality, etc. Reproducibility, i.e., producing another KB instance for a
new domain (e.g., classifying usage patterns of new types of public transportation) reusing existing
ontologies is the most challenging but interesting area of future research.

Future promising directions can be applying deep networks for learning relational reasoning [32] and
other properties from richer (image) data [31] and interactions [40]. Another interesting idea is using
a deep reinforcement or active learning setting [10]. This would serve both finer grained activity
recognition, but also, more generally, learning state representations for real-time control and advice.
We plan to improve the ontology avoiding design pitfalls 10 and applying use-case adapted tools
towards coverage evaluation. Since scalability and suitability of an ontology can be only evaluated
depending on a given set of requirements, using CQOA (Competency Question-driven Ontology
Authoring) tests to assess whether a given competency question is able to be answered by the ontology
[12] seems promising. Other ideas are enhancing missing data with crowd-sourced approaches such
as in social LSTM [1], as well as using unsupervised online discovery of periodic and stationary
patterns with temporal behaviour assumptions [21] and mobile phone only datasets [20]11.
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