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Abstract

Our long term interest is in building inference algorithms capable of answering
questions and producing human-readable explanations by aggregating information
from multiple sources and knowledge bases. Currently information aggregation
(also referred to as “multi-hop inference”) is challenging for more than two facts
due to “semantic drift”, or the tendency for natural language inference algorithms
to quickly move off-topic when assembling long chains of knowledge. In this
paper we explore the possibility of generating large explanations with an aver-
age of six facts by automatically extracting common explanatory patterns from
a corpus of manually authored elementary science explanations represented as
lexically-connected explanation graphs grounded in a semi-structured knowledge
base of tables. We empirically demonstrate that there are sufficient common ex-
planatory patterns in this corpus that it is possible in principle to reconstruct unseen
explanation graphs by merging multiple explanatory patterns, then adapting and/or
adding to their knowledge. This may ultimately provide a mechanism to allow
inference algorithms to surpass the two-fact “aggregation horizon” in practice by
using common explanatory patterns as constraints to limit the search space during
information aggregation.

1 Introduction

Explainable methods of inference have emerged as an important area of study in natural language
processing and machine learning [11], particularly for domains such as scientific discovery or
automated medical diagnosis, where user trust is paramount, and the cost of making errors is high.
Standardized science exams provide a challenge task for explainable question answering [1], as
the questions contain a variety of complex and challenging inference problems [3, 5], and yet are
expressed in simple-enough language that they provide a proving ground for developing algorithms
specifically aimed at improving our capacity for automated inference and explanation generation
while controlling for language complexity. Underscoring the difficulty of this task, to date the best
ensemble solvers answer approximately 60% of elementary and middle-school science questions
correctly [2, 12], and the best explanation-centered solver using information aggregation produces
high-quality human-readable explanations for only about 25% of questions [6].

QA is often modeled as either a retrieval task, or an inference task. With respect to retrieval, models
perform an answer sentence selection task where they learn to identify single sentences or short
continuous passages of text in a corpus that answer the question. Many questions that require complex
inference often can’t be answered by a single continuous passage of text, and inference models work
to solve this by identifying and aggregating information from multiple sources using a variety of
techniques including logic [9], heuristics for matching rows of semi-structured tables [8], or learning
to combine free-text sentences decomposed into graphs on clausal and prepositional boundaries [6].
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Figure 1: An overview of our proposed approach: inferences and explanations to novel questions are
constructed by merging, adapting, and adding to subsets of gold explanations from known questions.

In the elementary science domain, building corpora of explanations has allowed us to estimate that
each question requires an average of 4 to 6 separate facts to both correctly answer and to generate an
explanation for [5]. Currently, nearly all inference models for QA that we are aware of have difficulty
successfully aggregating more than two facts, due to the phenomenon of “semantic drift”, or the
tendency for inference to quickly drift off topic when creating long chains of facts connected by
imperfect signals, like lexical overlap (i.e. shared words in two sentences), in a large search space
[4]. To understand precisely how much semantic drift affects inference, we recently characterized
how often lexical overlap leads to the meaningful aggregation of facts using 9,500 manual ratings
of aggregation quality on both in-domain (elementary study guide) and open-domain (Wikipedia)
corpora. We found the chance of meaningfully aggregating two sentences to be approximately 5%
for in-domain resources, and 0.1% for the open-domain corpus, making chance performance for
successfully constructing the average 6-fact explanation at less than one in a million. 1. Overcoming
the issue of semantic drift and the current “aggregation horizon” of 2 facts is one of the substantial
barriers to successfully answering complex questions.

Characterizing explanations may provide a vehicle for reducing semantic drift, by identifying com-
mon explanatory patterns present in explanations that can provide a scaffold for constructing new

1The details of this characterization of lexical overlap as a vehicle for information aggregation and explanation
generation are described in a paper currently under review

2



Question:    Which event involves a     consumer    and a    producer    in a    food chain    ?

leaf green plant

roots plant

pedals bicycle

cell wall plant cell

deer animal

green color

shelter protective covering

electromagnet

food chain animal consumer eats producers/other animals food
food chain green plant producer creates food consumers

food chain bacteria decomposer recycles nutrients
tree reproduction squirrel seed disperser relocates seeds

In the process, an has the role of which for
In the process, a has the role of which for

In the process, a has the role of which
In the process, a has the role of which

A is a part of a

are a part of a

are a part of a

A is a part of a

A is a kind of
is a kind of
is a kind of

An is a kind of magnetelectric

PROCESS NAME ACTOR ROLE ACTION PATIENT PURPOSE

PART WHOLEHYPONYM HYPERNYMSCOPE

[ A ] a cat eats a mouse [ *B ] a    deer    eats   a    leaf [ C ] a hawk eats a mouse [ D ] a snake eats a ratAnswer Candidates:

Process Roles Table

Taxonomy Table PartOf Table

Figure 2: An example 4-sentence explanation, expressed as rows in semi-structured tables. These
rows form a lexically-connected “explanation graph”.

explanations. Here we approach reasoning not as a problem of building a “universal reasoning
engine”, but by building a large set of very specific competencies that together are able to answer
a wide variety of questions, similar to Minsky’s Society of Mind hypothesis [10]. We hypothesize
that sufficiently detailed explanations can form explicit records of the reasoning required by a human
to move from question to correct answer, and that large corpora of explanations will show common
explanatory patterns (at various levels of abstraction) that can be reused to develop domain compe-
tencies and perform inference on new, unseen questions. We further hypothesize that many of these
patterns will be highly domain-specific, applying only to a narrow subset of questions, while others
may be general and be useful across a variety of question types.

This project is only at the preliminary stages, as we have only recently developed and demonstrated
tools, representations, and training protocols that allow the construction of corpora of explanations
in computable form at the scale of thousands of questions. This paper presents our first steps
in identifying possible forms that common explanatory patterns might take, and we investigate
representations of explanation patterns as graphs at different levels of abstraction. We also explore
how explanatory patterns might be used in practice by being combined, adapted, or added to with
additional facts that together provide both the inference required to answer science questions, as
well as a compelling human-readable justification for why those answers are correct (this process is
illustrated in Figure 1). We conclude with a study of the feasability of this approach on rebuilding
gold explanations that require aggregating up to 6 facts to successfully answer and explain.

2 Representing explanations as lexically-connected graphs

In this study, we make use of an in-house2 corpus of 1,680 computable explanations for elementary
(3rd to 5th grade) science questions from standardized exams in 12 US states, drawn from the AI2
Mercury and Licensed datasets.3 Because a repository of explanations does not exist for this domain,
each explanation was manually authored by an annotator to be an explicit natural language record of
the reasoning required for a given question and problem solving method. Explanations were targeted
at the level of a 5-year old, and contain detailed world knowledge that might seem overly verbose to
adults, but that is likely required to learn to perform computational inference.

To facilitate automated analysis, explanations are represented as a series of facts, with each fact
expressed as a row in a knowledge base of semi-structured tables. Each table is centered around a
particular relation, initially seeded from 20 common explanatory relations identified by Jansen et
al. [5], then expanded to include additional subtypes as identified in the data. The knowledge base
includes a total of 4,950 rows across 62 tables, and three broad types of knowledge: retrieval types
(e.g. taxonomic, part-of, properties), inference-supporting types (e.g. actions, uses, requirements,

2We call this explanation graph corpus “WorldTree”. The development of the tools, representations, and
annotation protocols to construct this large-scale corpus of explanation graphs is described in a paper currently
under review.

3http://www.allenai.org/data.html
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Figure 3: Patterns of edge overlap in explanation graphs at four levels of abstraction, grounded in an
example gold edge, and five edges that have a given level of abstracted overlap with the gold edge.

sources), and complex inference types (e.g. causality, coupled relationships, if/then, changes).
Similar to [8, 7], each table includes “filler” columns, allowing rows to concurrently function both as
computable semi-structured relational knowledge, as well as plain-text natural language sentences in
human-readable form. An example question and explanation constructed from four rows in three
separate tables is shown in Figure 2. In this corpus, each of the 1,680 questions requires an average
of 6 facts (table rows) to answer and explain the reasoning behind that answer.

We include the additional requirement that each sentence (or table row) in an explanation must be
lexically connected (i.e. have shared words with) at least one other sentence in the explanation. In
this way the explanations form lexically-connected "explanation graphs" that explicitly represent
both the knowledge required to answer and explain a question, as well as how the knowledge in an
explanation is interconnected. As shown in Figures 1 and 2, the explanation graph can be represented
both at the level of the table cell (low-level) and the level of the table row/sentence (high-level).

3 Identifying common explanatory patterns

What is an explanatory pattern? At a high-level, these might take the form of broad recipes for
answering a specific kind of question. At a low level, these might be thought of as n-grams (or,
subgraphs) of gold explanation graphs that commonly reoccur across different questions in the
explanation corpus, and might ultimately be used like puzzle pieces to construct new explanations.

Here we characterize explanation patterns by representing edges in gold explanation graphs at 4 levels
of abstraction, shown in Figure 3. The edges can be abstracted in several ways, where a specific table
row is replaced with progressively less specific references to that row. For example, the two rows on
an edge might be replaced with only a reference to the table that they come from (e.g. KINDOF and
CHANGES). Progressively more specific references might include both the table and columns that
overlap on a given edge, and this could be further specified to also include the specific words in those
two columns that overlap.
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Table 1: Example explanation patterns involving the KINDOF relation for each level of abstraction.
These explanatory patterns are small, involving only a single edge in an explanation graph. Example
linked sentences provided satisfy at least the minimum constraints of the pattern. Frequency represents
the number of questions whose explanations contain one of these patterns. Bold words highlight the
lexical overlap (shared words) on a given edge.

Freq. Pattern Abs.
11/800 water is a kind of liquid (KINDOF) ↔ boiling means changing from ROW

a liquid to a gas by adding heat energy (CHANGE).
5/800 (KINDOF, HYPONYM COL) ↔ (PARTOF, WHOLE COL) [“plant”] T/C/L

e.g. a tree is a kind of plant ↔ a leaf is a part of most plants
119/800 (KINDOF, HYPONYM COL) ↔ (KINDOF, HYPERNYM COL) T/C

e.g. a dog is a kind of animal ↔ an animal is a kind of organism
80/800 (KINDOF) ↔ (USEDFOR) T

e.g. a magnifying glass is a kind of tool ↔ a magnifying glass is used to see small
objects by making them appear bigger

3.1 Common Explanatory Patterns

We examined explanation graphs for approximately half the corpus (800 questions), representing
their edges at each of the 4 levels of abstraction, from identical edge to only references to tables.
Example patterns centered around the KINDOF table are shown in Table 1, and a complete list is
available in the supplementary data. The most common identical edge is water is a kind of liquid
(KINDOF) ↔ boiling means changing from a solid to a liquid by adding heat energy (CHANGE), an
edge common for change-of-state questions that discuss boiling, and which occurs in 11 separate
questions (1.4% of all questions). In total, 514 totally lexicalized edges (i.e. same rows) repeat more
than once in the corpus, with other frequently recurring edges discussing genetically inherited versus
learned characteristics, photosynthesis, electricity, astronomy, and other common test topics.

Progressively more abstracted versions of the edges occur more commonly, at the risk of reduced
specificity. The most common rule at the table/column level of abstraction is taxonomic traversal –
i.e., knowing that a dog is a kind of animal, and an animal is a kind of organism, which occurs at
least once in 15% of all explanations (119 of 800, see Table 1). Taxonomic traversal is often manually
implemented as a high-confidence rule in inference solvers, but here emerges naturally as a frequently
used explanatory pattern in the corpus, highlighting the potential utility of this approach to ultimately
aid automatic methods of inference.

3.2 Reusing common explanatory patterns through merges, adaptations, and additions

While specific edges at different levels of abstraction are commonly reused in explanations, is it
possible that larger subgraphs also commonly reoccur, potentially dramatically reducing both the
search space of knowledge, and need for novel information aggregation when making an inference
for novel questions?

To answer this question, we found all questions in the corpus whose gold explanation graphs contain
up to 9 edges, and then exhaustively attempted to reconstruct those gold explanations using subgraphs
of explanations taken from other questions, also exhaustively represented at all possible combinations
of abstraction. We allow up to 3 subgraphs to merge together based on having common edges, and
rank the resulting merged subgraphs based on the number of missing edges when compared to the
gold graph, the level of abstraction of common edges that subgraphs were merged on (favoring
identical edges before abstracted matches), as well as the least overall combination of abstractness
across all edges in the subgraph. In this way, the combined graph that emerges as the top ranked
reconstruction attempts to prioritize having some representation for all the edges in the gold graph,
while making high-confidence (i.e. less abstract) merges between subgraphs, and having the least
abstract representation of edges compared to the gold graph.

An example pattern is included in Table 2, and the average of the top-ranked reconstructed graphs is
shown in Figure 4, averaged across gold graphs with between 1 and 9 edges, and broken down by
the number of subgraphs merged. Grounding this in a hypothetical gold explanation graph with 9
edges, this analysis shows that there are at least two subgraphs in the explanation corpus that, when
merged, will contain an average of 3 identical edges, 1.5 missing edges that require information
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Table 2: Example question, its gold explanation, and an explanation for a different question that
contains zero of the same sentences/rows, and few of the same content (i.e. “non-fill”) words, but
that provides a recipe for answering the question and generating an explanation. (Note, edges are not
drawn for space, but are at the T/C, and T/C/L [“measure”] adaptation level of abstraction).

Question Walter wanted to find out if faster wind speeds increased the amount of
wind erosion. Which instrument should he use to measure wind speed?

Answers (A*) anemometer (B) barometer (C) rain gauge (D) thermometer

Gold wind speed is a property of weather (PROPERTIES).
Explanation an anemometer is a kind of instrument (KINDOF).

an anemometer is used to measure wind speed (USEDFOR).

Similar air pressure is a property of air/the atmosphere (PROPERTIES).
Explanatory an barometer is a kind of instrument (KINDOF).
Pattern a barometer is used to measure air pressure (USEDFOR).

aggregation, and 4.5 edges represented at various levels of abstraction away from the gold edges that
require adaptation to reconstruct the gold explanation.

4 Conclusion

In this work we explore automatically extracting common inference patterns from corpora of explana-
tions represented as graphs. Our analysis suggests that not only are common explanatory patterns
present at various levels of abstraction, but that it may be possible to combine large subgraphs of
explanations like puzzle pieces to generate novel explanations to unseen questions, reducing the
search space for inference solvers, and increasing the number of facts that can be meaningfully
aggregated. The supplementary data for this paper, including common explanatory patterns in this
corpus, and a fine-grained characterization of reconstruction quality (Figure 4), are included in the
supplementary data at http://www.cognitiveai.org/explanations .
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