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Knowledge bases are incomplete
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Task: Automatically predict missing relation links
to extend the coverage of the KB.




Information Source: Existing knowledge from KB
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Information source: Facts stated in text

CITY OF

Chicago Honoﬁﬂa—\\\\\
i Boiijyf

LIVED_INY_

. United States  Barack Obama worked (n
Barack Obama

Chicago.
—\\\\\\SPOUSE

Michelle Obama A photo of Barack Obama’s
Chicago house.

Goal: use both sources of information. [Lao et al. 2012], [Gardner et al.
2013,2014] [Riedel et al. 2013] [Neelakantan et al 2015]




Outline

Background

«  Embedding-based models for KB completion
« Using text: Universal Schema

Problems/advances

« Sparsity of textual relations
- Compositional representations of text

 Are node/relation embeddings sufficient
 Using observed features

» Inference from multi-step relation paths from KB and text
- Efficient compositional representation and learning

Conclusion
e



Fmbedding-based models for KB completion
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RESCAL [Nickel et al 2011], TransE [Bordes et al 2011, 2013], Bilinear-diagonal [Yang et al. 2015]



Modeling text in embedding-based models for KB Completion
Universal Schema [Riedel, Yao, Marlin, McCallum 2013]

 Detect mentions of entity pairs in large document collections
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Sparsity of textual relations

Textual Pattern Count
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[dea: Represent the compositional structure of
textual relations (using convolution)
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Compositional parametrization of textual relations

r = max{h;}
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[Toutanova, Chen, Pantel, Poon, Choudhury, Gamon, EMNLP 2015]



Results: Using compositional representations of text

Evaluation on held out queries : Where did Michelle Obama live?
Mean reciprocal rank of first correct answer (times 100)

41 -

40.1
40 - B KB Inference
39 37.7
38 - 373 B KB + text-basic
37
36 - B KB+text
35 positional

Mean Reciprocal Rank (MRR)

FB15K-237 new dataset from Freebase and ClueWeb.
http://research.microsoft.com/en-us/downloads/3a9bf02d-b791-4e95-b88d-389feef3e421/
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Can learned embeddings of entities and relations
encode sufficient relevant structure from KB+text?

« Extreme cases: symmetric and inverse relationships
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Simple observed teatures model (impoverished PRA)

« Extreme cases: symmetric and inverse relationships

f(x=Michelle Obama, sroust, y=Barack Obama) = w,;¢; = 99.8
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-mbedding versus simple observed features on FB15K
Bordes et al 2013]
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Result largely due to redundancy of knowledge base, but gains from observed features (e.g.
direct text links) also seen in other datasets in our work and prior work [e.g. Knowledge Vault]
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Relation paths between genes in genomics KB+text

Paths from GRB2 to MAPK3
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Prior work on learning with relation+text paths: Path
Ranking Algorithm [Lao & Cohen 2010, Lao et al 2012]

 For an ordered entity pair GRB2, MAPK3, compute path-constrained
random walk probabilities to reach MAPK3 from GRBZ2 given each

allowed path type (sequence of relation types)

P1: GRB2 <reg+, _reg+, _family> MAPK3 0.30
P2: GRB2 <reg+, _dobj-[activate]-nsubj, _family> MAPK3 0.40
P3: GRB2 <_reg+,_family> MAPK3 0.05

 Learn weights for path features to predict relationships between entities.




Prior work on learning with relation+text paths

Sparsity of path types: exponential number of path types; text makes
problem especially challenging

- Computational efficiency problem: memory to store path features, time to
compute path features and score node pairs
» Select a limited number of allowable path types [Lao et al 2011,Lin et al 2015, Guu et al 2015];
- Faster ways to compute random walk probabilities [Lao 2012] or forgo use of random walk

probabilities [Gardner and Mitchell 2015]

« Statistical estimation problem: too many parameters to learn without parameter
sharing
* Integrate vector space similarity in random walks: [Gardner et al 2014]

» Learn compositional representations of path features using RNN neural networks [Neelakantan et
al 2015] or simpler addition of edge embeddings [Lin et al 2015]



Can we do even more with compositional representation
of path types?

» Finer-grained information from relation paths:
« What nodes does a path pass through?

P1: GRB2 <reg+, IL2, _reg+, MAPK1, _family> MAPK3 0.30

» Paths passing through particular genes might be more important

« But in traditional approach blows up memory required to store paths
and parameters to learn.

« Our approach: compositional representations of paths including
path types and nodes outanova, Lin, Yih, Poon, Quirk, ACL 2016]



Compositional representations of paths including nodes
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« Turns out we don't need to store explicit paths and compute path-
constrained random walk probabilities to evaluate and learn the
scoring function!



-xact algorithm to compute weighted sum of path
representations

F(s,)= ) P(tls m®(m)

||=1

» Incrementally compute the sum of path representations by using sums of paths up to
length [ to compute sums of paths up to length [+7

« Memory for connected entity pairs equal to dimensionality of relation embeddings for
each path length: can be much lower than number of active features per pair in PRA

» The time to compute scores is O(LEN,) (not exponential with path length)

+ Adding node weights does not increase asymptotic complexity.

» Can be much more efficient than standard approach for large L and a large set of
possible relations R.
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Results: using compositional representations of relation
naths from KB and text relations

Hits@10 on Gene Regulation
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Conclusion

« Compositional representations of text help improve universal
schema models

» Explicit observed features from KB+text graph can bring
substantial benefits

« Compositional representations of KB+text relation paths enable
richer context (path nodes) and exact efficient computation




