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Abstract

Universal schema jointly embeds knowledge bases
and textual patterns to reason about entities and rela-
tions for automatic knowledge base construction and
information extraction. In the past, entity pairs and
relations were represented as learned vectors with
compatibility determined by a scoring function, lim-
iting generalization to unseen text patterns and enti-
ties. Recently, ‘column-less’ versions of Universal
Schema have used compositional pattern encoders
to generalize to all text patterns. In this work we
take the next step and propose a ‘row-less’ model of
universal schema, removing explicit entity pair rep-
resentations. Instead of learning vector representa-
tions for each entity pair in our training set, we treat
an entity pair as a function of its relation types. In
experimental results on the FB15k-237 benchmark
we demonstrate that we can match the performance
of a comparable model with explicit entity pair rep-
resentations using a model of attention over relation
types. We further demonstrate that the model per-
forms with nearly the same accuracy on entity pairs
never seen during training.

1 Introduction

Automatic knowledge base construction (AKBC) is the
task of building a structured knowledge base (KB) of
facts using raw text evidence, and often an initial seed
KB to be augmented (Carlson et al., 2010; Suchanek et
al., 2007; Bollacker et al., 2008). Extracted facts about
entities and their relations are useful for many down-
stream tasks such as question answering and query un-
derstanding. An effective approach to AKBC is Universal
Schema, in which relation extraction is modeled as a ma-
trix factorization problem wherein each row of the matrix
is an entity pair and each column represents a relation be-
tween entities. Relations derived from a KB schema and
from free text are thus embedded into a shared space al-
lowing for a rich representation of KB relations, the union
of all KB schemata.

This formulation is still limited in terms of its general-
ization, however. In its original form, Universal Schema
can reason only about entity pairs and text relations ex-
plicitly seen at train time; it cannot predict relations be-
tween new entity pairs. In this work we present a ‘row-
less’ extension of Universal Schema. Rather than repre-
senting each entity pair with an explicit dense vector, we
encode entity pairs as aggregate functions over their re-
lation types. This allows Universal Schema to form pre-
dictions for all entity pairs regardless of whether that pair
was seen during training, and provides a direct connec-
tion between the prediction and its provenance.

Many models exist which address this issue by op-
erating at the level of entities rather than entity pairs.
A knowledge base is naturally described as a graph,
in which entities are nodes and relations are labeled
edges (Suchanek et al., 2007; Bollacker et al., 2008).
In the case of knowledge graph completion, the task is
akin to link prediction, assuming an initial set of (s, r,
o) triples. See Nickel et al. (2015) for a review. No
accompanying text data is necessary, since links can be
predicted using properties of the graph, such as transitiv-
ity. In order to generalize well, prediction is often posed
as low-rank matrix or tensor factorization. A variety of
model variants have been suggested, where the proba-
bility of a given edge existing depends on a multi-linear
form (Nickel et al., 2011; Garcı́a-Durán et al., 2015; Yang
et al., 2015; Bordes et al., 2013; Wang et al., 2014; Lin
et al., 2015), or non-linear interactions between s, r, and
o (Socher et al., 2013). These entity-based models have
recall advantages over entity pairs. The model can pre-
dict relations between any two entity pairs in the absence
of other information such as the pair’s contextual occur-
rence in text.

However, entity models have been shown to be less
precise than entity pair models when text is used to
augment knowledge base facts. Both Toutanova et al.
(2015) and Riedel et al. (2013) observe that the entity
pair model outperforms entity models in cases where the
entity pair was seen at training time. Since Universal



Schema leverages large amounts of unlabeled text we
desire the benefits of entity pair modeling, and row-less
Universal Schema facilitates learning entity pairs without
the drawbacks of the traditional one-embedding-per-pair
approach.

In this paper we investigate Universal Schema mod-
els without explicit entity pair representations. Instead,
entity pairs are represented using an aggregation func-
tion over their relation types. This allows our model to
naturally make predictions about any entity pair in new
textual mentions, regardless of whether they were seen at
train time additionally giving the model direct access to
provenance. We show that an attention-based aggrega-
tion function outperforms several simpler functions and
matches a model using explicit entity pairs. We then
demonstrate that these ‘row-less’ models accurately pre-
dict on entity pairs unseen during training.

2 Background

2.1 Universal Schema

The Universal Schema (Riedel et al., 2013) approach to
AKBC jointly embeds any number of KB and text cor-
pora into a shared space to jointly reason over entities
and their relations (Figure 1). The problem of relation ex-
traction is posed as a matrix completion task where rows
are entity pairs and columns are KB relations and textual
patterns. The matrix is decomposed into two low-rank
matrices resulting in embeddings for each entity pair, re-
lation, and textual pattern. Reasoning is then performed
directly on these embeddings.

Riedel et al. (2013) proposed several model variants
operating on entities and entity pairs, and subsequently
many other extensions have been proposed (Yao et al.,
2013; Gardner et al., 2014; Neelakantan et al., 2015;
Rocktaschel et al., 2015). Recently, Universal Schema
has been extended to encode compositional representa-
tions of textual relations (Toutanova et al., 2015; Verga et
al., 2016) allowing it to generalize to all textual patterns
and reason over arbitrary text.

2.2 ‘Column-less’ Universal Schema

The original Universal Schema approach has two main
drawbacks: similar patterns do not share statistics, and
the model is unable to make predictions about textual pat-
terns not explicitly seen at train time.

Recently, ‘column-less’ versions of Universal Schema
have been proposed to address these issues (Toutanova et
al., 2015; Verga et al., 2016). These models learn com-
positional pattern encoders to parameterize the column
matrix in place of directly embedding textual patterns.
Compositional Universal Schema facilitates more com-
pact sharing of statistics by composing similar patterns
from the same sequence of word embeddings – the text
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Figure 1: Universal schema represents relation types and
entity pairs as a matrix. 1s denote observed training ex-
amples and the bolded .92 is predicted by the model.

patterns ‘lives in the city’ and ‘lives in the city of’ no
longer exist as distinct atomic units. More importantly,
Compositional Universal Schema can thus generalize to
all possible textual patterns, facilitating reasoning over
arbitrary text at test time.

3 Model

3.1 ‘Row-less’ Universal Schema

While column-less Universal Schema addresses reason-
ing over arbitrary textual patterns, it is still limited to
reasoning over entity pairs seen at training time. Verga
et al. (2016) approach this problem by using Universal
Schema as a sentence classifier – directly comparing a
textual relation to a KB relation to perform relation ex-
traction. However, this approach is unsatisfactory for two
reasons. The first is that this creates an inconsistency be-
tween training and testing, as the model is trained to pre-
dict compatibility between entity pairs and relations and
not relations directly. Second, it considers only a single
piece of evidence in making its prediction.

We address both of these concerns in our ‘row-less’
Universal Schema. Rather than encoding each entity pair
explicitly, we take the compositional approach of encod-
ing entity pairs as an aggregation over their observed re-
lation types (Figure 2). A learned entity pair embedding
can be seen as a summarization of all relation types for
which that entity pair was seen. Rather than learn this
summarization as a single embedding, we reconstruct an
entity pair representation from an aggregate of its relation
types, essentially learning a mixture model rather than a
single centroid.
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Figure 2: Row-less Universal Schema encodes an entity
pair as an aggregation of its observed relation types.

3.2 Aggregation Functions

In this work we examine several aggregation functions.
Mean Pool creates a single centroid for the entity pair by
averaging all of its relation vectors. While this intuitively
makes sense as an approximation for the explicit entity
pair representation, averaging large numbers of embed-
dings can lead to a noisy signal. Max Pool also creates a
single centroid for the entity pair by taking a dimension-
wise max over the observed relation type vectors. Both
mean pool and max pool are query-independent and form
the same representation for the entity pair regardless of
the query relation.

We also examine two query-specific aggregation func-
tions. These models are more expressive than a single
vector that is forced to to act as a centroid to all possible
relation types an entity pair can take on. For example, the
entity pair Bill and Melinda Gates could hold the relation
‘per:spouse’ or ‘per:co-worker’. A query-specific aggre-
gation mechanism can produce separate representations
for this entity pair dependent on the query.

The Max Relation aggregation function represents the
entity pair as its most similar relation to the query vector
of interest. This model has the advantage of creating a
query-specific entity pair representation but is more sus-
ceptible to noisy training data as a single incorrect piece
of evidence could be used to form a prediction.

Finally, we look at an Attention aggregation function
over relation types (Figure 3) which is similar to a single-
layer memory network (Sukhbaatar et al., 2015) . In this
model the query is scored with an input representation
of each relation type followed by a softmax, giving a

weighting over each relation type. This output is then
used to get a weighted sum over a set of output represen-
tations for each relation type resulting in a query-specific
vector representation of the entity pair. The model pools
relevant information over the entire set of relations and
selects the most salient aspects to the query relation.

3.3 Training

Riedel et al. (2013) use Bayesian Personalized Rank-
ing (BPR) (Rendle et al., 2009) to train their Univer-
sal Schema models. BPR ranks the probability of ob-
served triples above unobserved triples rather than ex-
plicitly modeling unobserved edges as negative. Each
training example is an entity pair/relation type triple ob-
served in the training text corpora or KB. Rather than
BPR, Toutanova et al. (2015) use a sampled softmax cri-
terion where they use 200 negative samples 1 to approxi-
mate the negative log likelihood. Results shown were ob-
tained using sampled softmax which outperformed BPR
in our early experiments.

Our training procedure for relation-only Universal
Schema model is similar to the original model. We first
pool all of the observed triples in our training data cre-
ating entity pair-specific relation sets REp. We remove
entity pairs with only a single observed relation type. We
then construct training examples for each observed rela-
tion type of an entity and an aggregation of all other re-
lation types observed with that entity; for each observed
relation type ri ∈ REp, we construct a positive training
example (ri,

{
REp \ ri

}
). We randomly sample a differ-

ent relation to act as the negative sample.

All models were implemented in Torch2 and were
trained using Adam (Kingma and Ba, 2015). They each
were trained with embedding dimension 25 and used 200
negative samples except for max pool which performed
better with two negative samples. The entity pair model
used a batch size 1024, `2 = 1e-8, ε = 1e-4, and learn-
ing rate .01. The aggregation models all used batch size
4096, `2 = 0, ε = 1e-8, and learning rate .01. The col-
umn vectors were initialized with the columns learned by
the entity pair model. Randomly initializing the query
encoders and tying the output and attention encoders per-
formed better and all results use this method. Models
were tuned to maximize mean reciprocal rank (MRR) on
the validation set with early stopping.

1Many past papers restrict negative samples to be of the same type
as the positive example. We simply sample uniformly from the entire
set of entities that would form a valid entity pair.

2https://github.com/patverga/
torch-relation-extraction

https://github.com/patverga/torch-relation-extraction
https://github.com/patverga/torch-relation-extraction
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Figure 3: In the Attention model the query is dotted with an input representation of each relation type followed by
a softmax, giving a weighting over each relation type. This output is then used to get a weighted sum over a set of
output representations for each relation type. The result is a query-specific vector representation of the entity pair. The
Max Relation model simply takes the max dot product rather than a softmax and weighted average.

4 Experimental Results

4.1 Data and Evaluation

We evaluate our models on the FB15k-237 dataset from
Toutanova et al. (2015). The data is composed of a small
set of 237 Freebase relations and approximately 4 mil-
lion textual patterns from Clueweb with entities linked to
Freebase (Gabrilovich et al., 2013). In past studies, for
each (subject, relation, object) test triple, negative exam-
ples are generated by replacing the object with all other
entities, filtering out triples that are positive in the data
set. The positive triple is then be ranked among the nega-
tives. In our experiments we limit the possible generated
negatives to those entity pairs that have textual mentions
in our training set. This way we can evaluate how well the
model classifies textual mentions as Freebase relations.
We also filter textual patterns with length greater than 35.
We report the percentage of positive triples ranked in the
top 10 amongst their negatives as well as the MRR scaled
by 100.

4.2 Results

Our results are shown in Table 1. The model with ex-
plicit entity pair representations outperforms the ‘row-
less’ variant by 2.9 MRR and 2.7% Hits@10. However,
these results do show that relation aggregation is competi-
tive with entity pair embeddings and it is possible to have
a Universal Schema model without entity embeddings.
With further experimentation we are confident that the
‘row-less’ model will perform on-par or better than the
entity pair model.

The max model performs competitively with the atten-
tion model. This is not entirely surprising as it is a simpli-

fied version of the attention model. Further, the attention
model reduces to the max relation model for entity pairs
with only a single observed relation type. In our data,
64.8% of entity pairs have only a single observed relation
type and 80.9% have 1 or 2 observed relation types.

We also explore the models’ abilities to predict on un-
seen entity pairs (Table 2). We remove all training exam-
ples that contain a positive entity pair in either our vali-
dation or test set. We use the same validation and test set
as in Table 1. The entity pair model predicts random rela-
tions as it is unable to make predictions on unseen entity
pairs. The max pool and mean pool each suffer approxi-
mately 30% relative decrease in MRR and 20% decrease
in Hits@10.

Both the max relation and attention models perform
nearly as well whether the entity pairs were observed dur-
ing training or not. The attention model performs slightly
better than the max relation model in this scenario.

Model MRR Hits@10
Entity-pair Embeddings 31.85 51.72
Mean Pool 25.89 45.94
Max Pool 29.61 49.93
Max Relation 31.71 51.94
Attention 31.92 51.67

Table 1: The percentage of positive triples ranked in the
top 10 amongst their negatives as well as the mean re-
ciprocal rank (MRR) scaled by 100 on a subset of the
FB15K-237 dataset. Negative examples were restricted
to entity pairs that occurred in the KB or text portion of
the training set.



Model MRR %dec Hits@10 %dec
Entity-pair Embeddings 5.23 83.6 11.94 76.9
Mean Pool 18.10 30.1 35.76 22.2
Max Pool 20.80 29.8 40.25 19.4
Max Relation 28.46 10.3 48.15 7.3
Attention 29.75 6.8 49.69 3.8

Table 2: Predicting entity pairs that were not seen at train
time. The percentage of positive triples ranked in the top
10 amongst their negatives as well as the mean reciprocal
rank (MRR) scaled by 100 on a subset of the FB15K-
237 dataset. Also shown is the percent relative decrease
in MRR and Hits@10 between Table 1 (entity pairs seen
during training) and this table (entity pairs unseen during
training).

5 Conclusion
In this paper we explore a row-less extension of Universal
Schema that forgoes explicit entity pair representations
for an aggregation function over relation types. This ex-
tension allows prediction between all entity pairs in new
textual mentions – whether seen at train time or not – and
also provides a natural connection to the provenance sup-
porting the prediction.

In this work we show that an aggregation function
based on query-specific attention over relation types out-
performs query independent aggregations. We show that
aggregation models are able to predict on par with entity
pair models for seen entity pairs and, in the case of atten-
tion, suffer very little loss for unseen entity pairs.

We also limited our pattern encoders to lookup-tables.
In future work we will combine the column-less and row-
less approach to make a fully compositional Universal
Schema model. This will allow Universal Schema to gen-
eralize to all new textual patterns and entity pairs.
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