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Abstract

In this paper we present a proof-of-concept
implementation of Neural Theorem Provers
(NTPs), end-to-end differentiable counter-
parts of discrete theorem provers that per-
form first-order inference on vector represen-
tations of symbols using function-free, possi-
bly parameterized, rules. As such, NTPs fol-
low a long tradition of neural-symbolic ap-
proaches to automated knowledge base infer-
ence, but differ in that they are differentiable
with respect to representations of symbols in
a knowledge base and can thus learn repre-
sentations of predicates, constants, as well as
rules of predefined structure. Furthermore,
they still allow us to incorporate domain-
knowledge provided as rules. The NTP pre-
sented here is realized via a differentiable ver-
sion of the backward chaining algorithm. It
operates on substitution representations and
is able to learn complex logical dependencies
from training facts of small knowledge bases.

1 Introduction

Current state-of-the-art methods for automated
knowledge base (KB) construction learn distributed
representations of fact triples (Nickel et al., 2012;
Riedel et al., 2013; Socher et al., 2013; Chang et
al., 2014; Neelakantan et al., 2015; Toutanova et al.,
2015). An open question is how to enable first-order
reasoning with commonsense knowledge (Nickel et
al., 2015). We believe a promising direction to-
wards this goal is the integration of deep neural net-
works with the capabilities of theorem provers. Neu-
ral networks can learn to generalize well when ob-

serving many input-output examples, but lack inter-
pretability and straightforward ways of incorporat-
ing domain-specific knowledge. Theorem provers
on the other hand provide effective ways to reason
with logical knowledge. However, by operating on
discrete symbols they do not make use of similari-
ties between predicates or constants in training data
(e.g., LECTURERAT ∼ PROFESSORAT, ORANGE ∼
LEMON, etc).

Recent neural network architectures such as Neu-
ral Turing Machines (Graves et al., 2014, NTMs),
Memory Networks (Weston et al., 2015b), Neural
Stacks/Queues (Grefenstette et al., 2015; Joulin and
Mikolov, 2015), Neural Programmer (Neelakantan
et al., 2016), Neural Programmer-Interpreters (Reed
and de Freitas, 2016) and Hierarchical Attentive
Memory (Andrychowicz and Kurach, 2016) replace
discrete functions and data structures by end-to-end
differentiable counterparts. As such, they can learn
complex behaviour from raw input-output examples
via gradient-based optimization.

NTMs and their relatives are capable of learning
programs and could in principle learn to emulate a
theorem prover. However, they might not be the
most efficient neural architecture for learning first-
order reasoning from input-output examples. Akin
to NTMs, which are end-to-end differentiable coun-
terparts of Turing machines, we investigate Neural
Theorem Provers (NTPs): end-to-end differentiable
versions of automated theorem provers. A distin-
guishing property of NTPs is that they are differ-
entiable with respect to symbol representations in a
knowledge base. This enables us to learn represen-
tations of symbols in ground atoms (predicates and



constants) and parameters of first-order rules of pre-
defined structure using backpropagation. Further-
more, NTPs can seamlessly reason with provided
domain-specific rules. As NTPs operate on dis-
tributed representations of symbols, a single hand-
crafted rule can be leveraged for many proofs of
queries with similar symbol representations. Finally,
NTPs allow for a high degree of interpretability by
providing such proofs.

Our contributions are threefold: (i) we present
the construction of an NTP based on differentiable
backward chaining and unification, (ii) we show that
when provided with rules this NTP can perform first-
order inference in vector space like a discrete theo-
rem prover would do on symbolic representations,
and (iii) we demonstrate that NTPs can learn repre-
sentations of symbols and first-order rules of prede-
fined structure.

2 Related Work

Combining neural and symbolic approaches for re-
lational learning and reasoning has let to many
promising neural network architectures over the past
decades (Garcez et al., 2012). Early proposals for
neural-symbolic networks are limited to proposi-
tional formulae (e.g., EBL-ANN (Shavlik and Tow-
ell, 1989), KBANN (Towell and Shavlik, 1994)
and C-ILP (Garcez and Zaverucha, 1999)). Other
neural-symbolic approaches focus on first-order in-
ference, but do not allow one to learn vector rep-
resentations of symbols from training facts of a KB
(e.g., SHRUTI (Shastri, 1992), Neural Prolog (Ding,
1995), CLIP++ (França et al., 2014) and Lifted
Relational Neural Networks (Sourek et al., 2015)).
Neural Reasoner (Peng et al., 2015) translates query
representations in vector space without rule rep-
resentations and can thus not incorporate domain-
specific knowledge. Rocktäschel et al. (2014),
Rocktäschel et al. (2015), Vendrov et al. (2016) and
Hu et al. (2016) regularize distributed representa-
tions via domain-specific rules, but do not learn such
rules from data and only support a restricted subset
of first-order rules. The NTP proposed here builds
upon differentiable backward chaining and is thus
related to Unification Neural Networks (Komen-
dantskaya, 2011; Hölldobler, 1990), but operates on
vector representations of symbols instead of scalar

values. Yin et al. (2015) and Andreas et al. (2016)
map queries to multiple differentiable modules that
can be used to retrieve answers from a KB. Clark
et al. (2014) extract common-sense knowledge from
textbooks in form of rules to improve KB inference
by soft-matching and non-recursive forward infer-
ence. Lee et al. (2016) propose a Tensor Product
Representation to answer Facebook bAbI (Weston
et al., 2015a) questions. Gu et al. (2015) traverse
KBs in vector space to answer queries. Socher et
al. (2012) and Bowman et al. (2015) demonstrate
that recursive neural networks can learn to evaluate
propositional logic expressions.

3 Differentiable Backward Chaining

Backward chaining is a common method for au-
tomated theorem proving, and we refer the reader
to Russell and Norvig (1995) for details. Given a
goal/query (e.g. GRANDPARENTOF(X, Y)), back-
ward chaining finds substitutions of free vari-
ables with constants of facts in a KB (e.g.
{X/ABE,Y/BART}). This is achieved by re-
cursively iterating through rules that translate a
goal into sub-goals which it attempts to prove,
thereby exploring possible proofs. For example,
the KB could contain the following rule that can
be applied to find answers for the above goal:
∀X,Y,Z : PARENTOF(X,Y) ∧ PARENTOF(Y,Z) ⇒
GRANPARENTOF(X,Z). For the rest of the paper
we assume all free variables are universally quanti-
fied. Furthermore, we call the conjunction of atoms
before the implication symbol the left-hand side (or
body) of the rule and the atom after the implication
the right-hand side (or head) of the rule.

The proof exploration in backward-chaining is di-
vided into two functions called OR and AND. The
former attempts to prove a goal by unifying it with
every rule’s right-hand side in a KB, yielding inter-
mediate substitutions. For rules where this succeeds,
the left-hand side and substitution is passed to the
AND function. AND then attempts to prove every
atom in the body sequentially by first applying sub-
stitutions and subsequently calling OR. This is re-
peated recursively until unification fails, atoms are
proven by unification with facts in the KB, or a cer-
tain proof-depth is exceeded.
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Figure 1: Overview of differentiable backward chaining.

Goal and Substitution Structures The key idea
behind the proof-of-concept NTP presented here is
to recursively construct a neural network by replac-
ing operations on symbols in backward chaining
with differentiable operations on distributed repre-
sentations. To build such a network we separate
goals and substitutions into vector representations
of involved predicates and constants, and structures
that define the connections of a neural network.

For instance, G = #1(#2,X) is an example of a
structure of an entire class of goals. This structure
encodes that such goals encompass a vector repre-

sentation of a predicate symbol #1 and the first ar-
gument of the predicate #2. For example, the goal
GRANDPAOF(ABE,X) can be specified by G and
vector representations g = [vGRANDPAOF,vABE]. Fur-
thermore, based on the structure G it is clear that
proofs of that goal will be substitutions for X (e.g.
vBART). Akin to goals, we divide substitutions into
structures and representations, as well as a scalar
score τ ∈ (0, 1) that measures the success of the
substitution. For example, proofs of goals of the
structure G as defined above will be substitutions
with the structure S = {X/#1} accompanied by sub-
stitution representations (e.g. s = [vBART]).

With this divide we can now redefine operations
in backward chaining as follows. Operations that
concern variables and rules are mapping goal and
substitution structures (G and S) to new structures
that instantiate sub-networks. In contrast, operations
on symbols of predicates and constants can be com-
puted in vector space in a differentiable manner. The
resulting recursively constructed NTP is end-to-end
differentiable. An overview of the model architec-
ture with an example is given in Figure 1 and dis-
cussed in detail below.

OR The entry point to the NTP is an OR net-
work (Figure 1a) that for a given goal and substitu-
tion structure (G and S) instantiates a sub-network
for each one of the N rules in a knowledge base
T . The unification of the ith rule’s right-hand
side with a goal structure results in a new substi-
tution structure Si. When provided with a goal
representation, a unification network is computing
the unification success in vector space. For ex-
ample, assume at some proof-depth D in the NTP
we unify GRANDFATHEROF(ABRAHAM, Q) with
GRANDPAOF(ABE, LISA). This will result in a new
substitution structure S′

i = {Q/#1}, representation
s = [vLISA] and success τD that is passed further in
the network. In contrast to discrete unification that
checks for symbol equality, we calculate a soft uni-
fication from the previous unification success of the
outer network τD+1 and the similarity of predicate
and constant representations as follows:

τpredicate = sigmoid(vT
GRANDFATHEROFvGRANDPA) (1)

τarg1 = sigmoid(vT
ABRAHAMvABE) (2)

τD = min(τD+1, τpredicate, τarg1) (3)



AND The new substitution structure calculated by
unification instantiates an AND network (Figure 1c)
at depth D that attempts to sequentially prove the
left-hand side atoms of the rule given the current
substitutions. If the rule’s left-hand side structure
is empty (e.g. when the right-hand side represents
a fact in the KB) the AND network simply passes
the substitutions and their success through (Figure
1b). Otherwise, it applies the substitution on the first
atom of the left-hand side, resulting in a new goal
structure and representation, and instantiates an OR

network with that structure and the previous substi-
tution.

For example, assume we have unified
the right-hand side of FATHEROF(X,Y ) ∧
PARENTOF(Y,Z) ⇒ GRANDFATHEROF(X,Z)
with the goal GRANDFATHEROF(ABRAHAM, Q).
The result is a unification success τD as calculated
in Eq. 3, as well as a new substitution structure
S = {Q/Z,X/#1} where s = [vABRAHAM] becomes
the input to the AND network. This network will
first apply the substitution to FATHEROF(X,Y ),
resulting in a new goal structure G′ = #1(#2, Y ).
This structure now instantiates another NTP
(i.e. an OR module) of depth D − 1, which
attempts to prove the input goal representation
g = [vFATHEROF,vABRAHAM].

For every proof, i.e., every possible substitu-
tion of the structure S′ = {Q/Z, Y/#1}, a new
AND module is instantiated that attempts to recur-
sively prove the remainder of the left-hand side
(PARENTOF(Y, Z) in the example above). Finally,
the successes of all identical substitutions (i.e. sub-
stitutions to the same variables or representations of
constants) are merged by taking their max.

Note that given a KB, goal structure and depth,
the network structure of the NTP is fully specified
and many goals of the same structure can be used to
perform training and inference with the NTP.

Trainable Rules NTPs are not only differentiable
with respect to symbol representations in the KB,
but also latent symbol representations in first-order
rules of predefined structure. For instance, we could
assume that for some predicates in a KB a transi-
tive relationship holds. We can define a rule tem-
plate #1(X,Y )∧#1(Y,Z)⇒ #2(X,Z) whose latent
predicates v#1 ,v#2 are trainable parameters and op-
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Figure 2: Predictions of different NTP modes on a toy KB

where every column (within a subplot) represents a predicate

and every row an entity-pair. Training facts (red) and test

facts (blue) in the first subplot are consistent with two rules:

r1(X,Y )∧r1(Y,Z) ⇒ r2(X,Z) and r3(X,Y )∧r4(X,Y ) ⇒
r5(X,Y ). The other three subplots show predictions between

0 (white) and 1 (black) of the different modes discussed in text.

timized in the same way as symbol representations.

4 Experiments and Results

We implemented an NTP with differentiable back-
ward chaining in TensorFlow (Abadi et al., 2015).
Symbol representations are initialized randomly and
constrained to unit-length. During training we iter-
ate over the set of known facts, and optimize neg-
ative log-likelihood of the proof success of every
fact based on all other facts (and rules) using Adam
(Kingma and Ba, 2015). Furthermore, for every
training fact we sample an unobserved fact for the
same predicate (but different entity-pair) and opti-
mize its proof with a target success of zero.

Our NTP implementation is tested on toy KBs for
different scenarios shown in the four different sub-
plots in Figure 2. Every column (within a subplot)
represents a predicate and every row an entity-pair.
First, we run the NTP with given ground-truth rules
without training symbol or rule representations, and
test whether it can act as a discrete theorem prover.
As expected, given rules the NTP can infer all test



facts (2nd subplot in Figure 2). The third subplot
shows predictions when we let the NTP try to re-
construct training facts only with the help of other
facts by learning symbol representations (similar to
other representation learning approaches for KB in-
ference). Finally, a core benefit of the NTP is visi-
ble once we provide few reasonable rule templates1

and optimize for rule representations that best ex-
plain observed facts (4th subplot). We found that
this can work remarkably well, but also noticed that
the quality of trained rules is varying with different
random initialization of the rule’s parameters. We
need to investigate in future work how the robust-
ness of rule learning in NTPs can be improved.

5 Conclusion and Future Work

We proposed neural theorem provers for knowledge
base inference via differentiable backward chaining,
which enables learning of symbol representations
and parameters of rules of predefined structure.

Our current implementation has severe computa-
tional limitations and does not scale to larger KBs
as it investigates all possible proof paths. However,
there are many possibilities to improve upon the pre-
sented architecture. For instance, one can batch-
unify all rules whose right-hand side have the same
structure and employ existing architectures such as
Memory Networks or hierarchical attention for this
task. Furthermore, it is possible to partition and
batch rules not only by their right-hand side but also
left-hand side structure to instantiate a single AND

module for every partition. To further speed-up the
prover, we want to investigate processing batches of
queries, as well as differentiable ways of maintain-
ing only the N best instead of all possible substitu-
tion representations at every depth of the prover. In
addition, we will work on more flexible versions of
neural theorem provers, for instance, where unifica-
tion, rule selection and application itself are train-
able functions, or where facts in a KB and goals can
be natural language sentences.
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