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Abstract

One of the fundamental challenges in constructing knowledge bases is that the
knowledge we seek to capture comes from an uncertain and changing world. Con-
structing a KB necessitates dealing with a continual flow of evidence that requires
updating and revising the KB. A key question for the AKBC community is how
to construct and update KBs using a steadily growing stream of noisy extractions
from large text corpora, like the Web. In this vision paper, we (1) formalize the
problem of building a dynamic knowledge graph, (2) define a probabilistic model
for using new evidence to update the knowledge graph, and (3) present an efficient
algorithm for knowledge graph construction on streaming extractions.

1 The Challenge of the Dynamic Knowledge Graph

Consider a knowledge base (KB) constructed in 2008: it might accurately capture that Barack
Obama is a senator living in Illinois. However, a year later the correct KB must be revised: Barack
Obama is no longer a senator, but a president and his residence is Washington, DC. As this tiny exam-
ple motivates, a crucial challenge in updating the KB is that the facts it contains are not independent;
updating one fact, such as employment, may require revising many others, such as residence.

Humans have grappled with updating beliefs in response to changing conditions for millennia and
the problem has been studied in disciplines ranging from philosophy to computer science. Research
over the last few decades has studied many aspects relevant to KBs, spanning areas such as belief
revision[1], non-monotonic reasoning[2], and temporal knowledge bases[3, 4, 5]. However, this ex-
isting research does not address the practical problems facing AKBC, where information extraction
systems are applied to an infinite stream of textual data (such as the Web) and produce millions of ex-
tractions with varying degrees of confidence[6, 7]. In this paradigm, we must identify the important
statistical dependencies between facts and determine which facts are likely to require revision.

To capture statistical dependencies and uncertain information, we adopt a probabilistic approach
and formulate the problem in terms of knowledge graph construction. Knowledge graphs represent
entities as nodes and the relationships between them as edges, but the structure of the graph is often
unknown - requiring entity resolution, node labeling and link prediction. This problem is known
as knowledge graph identification (KGI)[8]. In KGI, a probabilistic model specifies a probabil-
ity distribution over possible knowledge graphs, and inference finds the most probable knowledge
graph.

Here we propose three of the fundamental challenges to applying KGI in a dynamic setting. (1)
How do probability distributions change as new evidence is introduced? What characterizes a de-
sirable model for updating the knowledge graph? (2) How can we specify probabilistic models for
dynamic data? How can modeling languages easily express relationships between new extractions
and existing knowledge? (3) What considerations are important for inferring dynamic knowledge
graphs? How can we improve the speed of inference without sacrificing the quality of the inferred
knowledge graph?

1



In this paper, we characterize the objective function for dynamic knowledge graph construction
(Section 2), introduce expressive syntax for specifying probabilistic models for this task (Section 3),
and propose an inference algorithm for dynamic graph construction that efficiently uses uncertainty
and evidence (Section 4).

2 A Formal Objective for Dynamic Knowledge Graph Construction

Belief revision defines two basic operations to integrate new evidence into a set of beliefs. The
first is updating an existing belief in response to new evidence. In probabilistic models, this can be
thought of as updating the conditional probability of a random variable. The second operation is
revision, the process of adding and reconciling beliefs. This can be interpreted as introducing new
variables into the joint probability distribution. However, the complication we face in our problem
setting is that as evidence is added, defining the probability distribution becomes intractable. We
must use limited evidence to define a distribution over knowledge graphs.

The key question is how to use this limited evidence to define the distribution. This question can be
answered differently for revisions and updates. For revisions, a crucial difficulty is finding the set of
related variables necessary to update the probability distribution and assess the validity of the revi-
sion. We address this challenge through model specification (in Section 3). In the case of an update,
a dynamic KGI system must decide if an update is necessary, which, in turn requires understanding
how well the existing probability distribution captures the value of the variable. This problem is
discussed in Section 4. However, to guide the discussion of these two essential components, in this
section we introduce a formal objective for the dynamic knowledge graph construction task.

We begin by introducing the probability distribution that KGI defines over possible knowledge
graphs (G). The distribution over knowledge graphs is induced by the particular model Π and
conditions on the evidence (E) in the form of extractions from text. We use the notation PΠ(G|E)
to refer to this distribution. As new evidence, E1 is added, applying the model results in updates and
revisions. This produces a new distribution (P1) over a new family of possible knowledge graphs
(G1): PΠ

1 (G1|E ∪ E1). Unfortunately, as the evidence grows the size of the graphical model also
increases, in terms of both nodes (random variables) and edges (conditional dependencies between
variables). The result is that the distribution over knowledge graphs becomes intractable to define.

The goal of dynamic knowledge graph construction is to infer the best knowledge graph using a
fixed amount of evidence (determined by the computational resources available). We formalize this
problem as one of choosing a model (∆) that includes the appropriate context for revisions (dis-
cussed in Section 3) and an algorithm (S∆) that identifies pertinent evidence using the uncertainty
in existing inferences (discussed in Section 4). The model ∆ specifies the interesting relationships as
the knowledge graph grows, while S∆ returns a set of interesting evidence to use during inference.
These two components allow us to define a new probability distribution over knowledge graphs:
P∆

1 (G1|S∆(G,E ∪ E1))

To determine the quality of the new distribution, P∆
1 , we compare the dynamic knowledge graph

to the knowledge graph inferred by KGI using all evidence. We refer to these knowledge graphs,
respectively as G∆

1 and GΠ
1 . We define the quality of the dynamic model, Q(∆), as the reciprocal of

the L2-norm of the difference between inferred values of variables, using notation: ||G∆
1 −GΠ

1 ||−1
2 .

As the distance between the inferences in the dynamic and full knowledge graph models decreases,
the quality score grows. While this quality score is not useful in the true problem setting, where the
full knowledge graph is intractable to compute, it provides a mechanism for evaluating the effective-
ness of the dynamic model and algorithm during training.

Having defined this quality score, what remains is to define an objective to optimize the dynamic
model and algorithm. Using the quality score, we can define the formal objective of dynamic knowl-
edge graph identification:

max
∆;S∆

Q(G∆
1 ) where G∆

1 = argmaxG1
P∆

1 (G1|S∆(G,E ∪E1)) s.t. |G1 ∪S∆(G,E ∪E1)| < t

Although optimizing over all possible dynamic models and algorithms is impossible, we show in
the next section how to parameterize ∆ and S∆ to allow maximization over models and algorithms
in the parameterized space.
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3 Specifying Models for Dynamic Knowledge Graphs

Thus far, we have defined the problem in terms of probability distributions over knowledge graphs.
However, these probability distributions are defined by variable dependencies in a probabilistic
graphical model. Specifying graphical models that can selectively encode dependencies between
variables is a necessary step for dynamic graph construction. Previous work[4, 5] has considered a
variety of temporal aspects of knowledge necessary for cleaning KBs. In this section we describe
desirable properties for dynamic model specification (∆) and introduce syntax that easily allows
models to specify when to use new evidence and when to condition on existing inferences.

For example, we may want to encode a dependency between a person’s employment, the location
of their employer, and their residence. While we expect a person’s employment and residence to
change frequently, the location of a company may remain relatively stable. Thus a dynamic model
may want to frequently infer new values for employment and residence while rarely inferring new
values for company location.

We consider extending the probabilistic soft logic (PSL) framework[9] to support specify-
ing dynamic models. Like many statistical relational learning approaches, PSL uses first-
order logic syntax to template graphical models. The model, specified by a set of uni-
versally quantified rules, is ground using evidence and the resulting ground rules (R) are
mapped to factors in a graphical model. For example the rule REL(worksFor, P, C) ∧
REL(headquarters, C, L) ⇒ REL(residentOf, P, L) captures a factor relating three
types of facts: employment (worksFor), company location (headquarters) and residence
(residentOf).

Our goal is to improve the tractability of inference by selectively grounding rules using a subset of
the evidence. The main obstacle is that the model specification, in terms of rules, does not allow
us to control the grounding of these rules. We extend the logical syntax used by PSL to allow each
logical predicate in a rule to specify the set of atoms used to ground that rule. As a concrete example,
consider the modified rule where the worksFor and residentOf predicates ground against the
set of atoms E1 while headquarters is grounded against all evidence:

REL(worksFor, P, C,E1) ∧ REL(headquarters, C, L)⇒ REL(residentOf, P, L,E1)

This extension of the model syntax allows a range of grounding specifications, including grounding
each predicate against a different set of evidence, or lazily instantiating atoms outside the specified
evidence sets when using an open-world model. Experimental code for this extension is available at
https://github.com/linqs/psl/tree/online_psl

4 An Algorithm for Dynamic Model Optimization

The final component in our approach to dynamic knowledge graph construction is an algorithm for
selecting limited evidence used to defined the distribution over knowledge graphs. We approach
this problem by defining a ranking function over evidence, allowing the algorithm to easily fulfill
requests for varying amounts of evidence. We assess the importance of each variable in the optimiza-
tion using two criteria: (1) how important is this evidence to our model? and (2) how uncertain is our
estimate of this variable? We measure these criteria using features from the optimization algorithm
used to find the most probable knowledge graph. In this section we provide a brief background of
this optimization algorithm, then discuss how features from this algorithm can be used to determine
the importance of evidence.

MPE inference of models in PSL is implemented using alternating dual method of multipliers
(ADMM) for consensus optimization[10]. Bach et al.[11] demonstrated that consensus optimiza-
tion can vastly improved scalability for inference in constrained, continuous MRFs, with empirical
results suggesting inference time scaled with the number of potential functions. We analyze the
ADMM objective and show how an optimization-aware algorithm can be used to determine which
variables are important to retain in the optimization. PSL defines the probability of a given config-
uration of variables (I) using an energy function where each ground rule is captured by a potential
φr:

PΠ(I) =
1

Z
exp

[
−
∑
r∈R

wrφr(I)

]
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At a high level, consensus optimization decomposes a problem into subproblems and iteratively
optimizes the model until convergence. In each iteration, the algorithm introduces a separate opti-
mization subproblem for each potential function in the graphical model, which is optimized inde-
pendently over local copies of the variables (Ir). At the end of each iteration, the local values of each
variable are averaged across potentials to provide a consensus estimate (Icr ). Deviations from the
consensus estimate are penalized in each potential through the introduction of a Lagrange multiplier.

More formally, ADMM decomposes the optimization of the term
∑
r∈R wrφr(I) into separate opti-

mizations for each φr, using the augmented Lagrangian to enforce consistency in values for the same
variables. This optimization is written in the scaled form as: minwrφr(I) + ρ

2 ||Ir − I
c
r + 1

ρyr||
2
2

where Ir are values assigned to the variables in potential φr and Icr are consensus estimates for
those variables found by averaging the previous round values of each variable. Here yr is the set of
Lagrange multipliers for the variables, derived from the constraint I = Ic.

Given the optimization objective, we consider two factors that affect how important the variable xi ∈
I is to the optimization. One factor is the weights wr for the potentials that take xi as an argument,
since intuitively potentials with higher weights have the largest impact on the objective value. The
second factor that captures the influence of xi are the Lagrange multipliers for variable yr[i], which,
intuitively, measure the disagreement of the potential function and the consensus estimates. Thus,
we can define the importance of variable xi as a combination of these two factors. We introduce a
simple, scaled combination of these two features to generate ranking scores: maxR(wr[xi])+βyr[i],
with scaling parameter β.

In addition to variables in the initial inference optimization, we also consider how to score variables
from new evidence added to the knowledge graph. For variables in the newly introduced evidence
determining the weights of associated rules is straightforward. Since the Lagrange multipliers were
calculated without using the evidence, their value may incorrectly capture the disagreement of the
value of the variable. In the case of updates to existing variables, we can compare the new and
existing values assigned to the variable. For new variables that were not previously part of the
graphical model, we use the maximum value of Lagrange multipliers in the optimization.

5 Discussion

In this paper, we motivate a fundamental problem confronting the AKBC community: constructing
knowledge graphs from an ever-growing stream of evidence. Broadly we argue that given boundless
evidence and bounded computational resources, collective methods for knowledge graph construc-
tion must be capable of prioritizing the inferences and evidence available. In this process, we con-
front two critical questions: What must we learn? What existing knowledge will best help us learn
it?

We identify three basic challenges:

1. Formalizing an objective function for dynamic knowledge graph construction
2. Specifying models that selectively leverage evidence
3. Selecting the most important evidence for updating beliefs

For each of these challenges, we provide analysis and an initial solution. We believe that dynamic
knowledge graph construction is a new frontier where many interesting open questions remain. Our
initial exploration suggests that our approach holds promise for addressing some of these questions,
and we are eager to apply these ideas in our future work.
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