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Abstract 

While there has been tremendous progress in automatic database population in 
recent years, most of human knowledge does not naturally fit into a database 
form. For example, knowledge that "metal objects can conduct electricity" or 
"animals grow fur to help them stay warm" requires a substantially different 
approach to both acquisition and representation. This kind of knowledge is 
important because it can support inference e.g., (with some associated 
confidence) if an object is made of metal then it can conduct electricity; if an 
animal grows fur then it will stay warm. If we want our AI systems to 
understand and reason about the world, then acquisition of this kind of 
inferential knowledge is essential.  

In this paper, we describe our work on automatically constructing an inferential 
knowledge base, and applying it to a question-answering task. Rather than trying 
to induce rules from examples, or enter them by hand, our goal is to acquire 
much of this knowledge directly from text. Our premise is that much inferential 
knowledge is written down explicitly, in particular in textbooks, and can be 
extracted with reasonable reliability. We describe several challenges that this 
approach poses, and innovative, partial solutions that we have developed. 
Finally we speculate on the longer-term evolution of this work. 

 

1. Introduction 

Our long-term goal is the construction of "knowledgeable machines" - machines that contain large 
volumes of general and scientific knowledge, stored in a computable form, supporting reasoning 
and explanation. Our short-term instantiation of this goal is to build a machine that can pass 
elementary grade science exams, itself a hard task that has not yet been achieved in AI. The 
challenge is formidable because many of the exam questions require reasoning with both domain-
specific and commonsense knowledge [1,12]. Given the cost of manually encoding that 
knowledge, our goal is to acquire much of it automatically. 

This performance task helps inform both the AKBC and reasoning requirements. For example, 
consider the following multiple choice questions, taken from a 4th grade exam: 

What form of energy is being used when a person pushes a wooden block across 
the floor? (A) mechanical  (B) magnetic  (C) sound  (D) electrical   

Fourth graders are planning a roller-skate race. Which surface would be the best 
for this race? (A) gravel  (B) sand  (C) blacktop  (D) grass  

This style of question is typical of 4th grade science, but is very different from the "factoid" 
questions that are often the focus of AKBC and question-answering [2]. There are no pre-
constructed factoid databases (e.g., Freebase tables) where answers can be looked up. Similarly, 



while Web search or word correlation methods can sometimes guess answers correctly, such 
methods are unreliable (e.g., in the second question, correlations between grass and race, and sand 
and surface, mislead such methods). Instead, they require knowledge about general truths and their 
application to specific (hypothetical) situations or scenarios. For the first question, we need access 
to knowledge that relates mechanical energy with movement of objects and an inference 
mechanism that draws conclusions about the “the block being pushed” using this knowledge. For 
the second question, we need to know that a roller-skate race involves roller skating, that roller 
skating is best on a smooth surface, and that blacktop is smooth. Obtaining these fragments of 
world knowledge and integrating them together is challenging. 

Text does provide much of the required knowledge, but often expressed using different wordings 
and requiring interpretation. For example, for the first question, a study guide textbook [7] states: 

Mechanical energy is produced when two objects move together. 
Mechanical energy exerted by one object can push or pull another object. 

and for the second we find in dictionaries: 

Roller skating: glide across a smooth surface wearing roller skates 
Blacktop: a bituminous material used for providing a smooth paving to a road. 

These examples illustrate some obstacles for acquiring and using knowledge from them: 
● Their wordings do not neatly align with the wording in the questions; rather, there are 

differences in both generality and phrasing that the system must bridge 
● They are almost all generic sentences, a difficult type to process 
● They are imprecise and/or have assumed (unstated) context 
● They are linguistically complex, meaning interpretations are likely to contain errors 

These lead to several requirements for acquisition, representation, and reasoning: 
● the system must have knowledge of linguistic variability and be able to tolerate it 
● the system must be able to relate specific cases to their generalizations (taxonomic reasoning) 
● the system must have a means for interpreting and applying generic statements 
● reasoning must be robust to an incomplete/noisy KB (some notion of probability/confidence 

is essential). In particular, the system needs to be able to make plausible leaps ("jump the 
gaps") between facts during inference if knowledge is missing. 

We have made some initial progress towards a representation language (partially) meeting these 
requirements, and AKBC technology for extracting knowledge in that form. We give a short 
overview of our progress, and then describe our longer-term directions. 

2. Approach 

 

2.1 Representation and Inference 

The input to our AKBC task is a collection of textbook-style texts and dictionary definitions, and 
the output is a knowledge base (KB), expressed in a probabilistic (subset of) first-order logic. 
Because the process is automated, the resulting logic expressions all have a similar structure, 
namely a "forall...exists..." format that we illustrate shortly. To tolerate a degree of linguistic 
variability, we include original text strings (words/phases) in the representation to denote 
concepts, and replace equality with a (phrasal) textual entailment service that provides a degree of 
confidence in equality. To tolerate incompleteness in the KB, we use an inference process that 
mixes logical reasoning with lexical matching, allowing the system to weakly reach conclusions 
even if some evidence is not known, thus "jump knowledge gaps" and avoid the brittleness of 
traditional deductive reasoning. A semantics for this is given in [6]. For other work on mixed 
inference, see [5,10,11]. 
 

2.2 AKBC Methodology 

Our approach to AKBC occurs in three steps: 
1. Specification: Identify the different classes of knowledge required for the performance task, 

and create a vocabulary for representing them (typically a small number of predicates). 
2. Extraction: Build and apply extractors that identify expressions of those knowledge types in 

text. 



3. Interpretation: Generate inference rules from the extractions. These rules denote the 
inference(s) that the extractions are deemed to sanction. 

We now briefly describe these steps. 
 

2.2.1 Specification  

Although our performance task requires substantial knowledge, there are recurring types of 
knowledge that can be identified. For these types, we define a simple modeling vocabulary 
(typically one or two predicates), so that they can be represented semantically rather than lexically 
in the KB. These predicates are the targets for extraction. From an analysis of exam questions, our 
initial target predicates were: CAUSE/EFFECT, ENABLES, PURPOSE, REQUIREMENT, 
CONDITION, PART-OF, and EXAMPLE-OF relationships. We have recently added a more 
specialized vocabulary for representing statements about discrete and qualitative changes. 
 

2.2.2 Extraction 

Rule acquisition is performed in two steps. In the first step, we identify where the relations of 
interest are expressed in text. This is done using a (currently) hand-authored set of extraction rules 
that associates particular syntactic dependency patterns with a semantic relationship. For example, 
a rule states that the pattern "X results in Y" may denote (with some confidence) a causality 
relationship CAUSES(X,Y). Each identification produces a data structure containing the syntactic 
elements involved in the pattern. Where X and Y are events, we further decompose them into 
subject+verb+object[+prepositional-phrase]* structures. For example, for one of the earlier 
example sentences, the extraction is as follows: 

“Mechanical energy is produced when two objects move together.” 
("two objects"/?x "produce" "Mechanical energy") "when"/CONDITION 

 ("two objects"/?x "move" "" [ "together" ]) 
 

2.2.3 Semantic Interpretation 

Extractions are just a semi-formal data structure reflecting generic statements in text. To use these 
for reasoning we need to make explicit what inferences they sanction, i.e., make a semantic 
interpretation. While generic statements can be interpreted in many ways, e.g., [3,4], we adopt a 
simple, "forall...exists..." default reading where (A RELATION B) is interpreted as "for all 
instances of A, there will (with some confidence c1) exist a B that is in RELATION to A.". We 
also add a reverse reading, namely "for all instances of B, there will (with some confidence c2) 
exist an A that is in inverse(RELATION) to B". These interpretations are mechanically generated 
from the extractions by an algorithm that embodies this interpretation policy. We currently assume 
equal confidences c1 and c2, but are developing algorithms for better estimating confidences 
(using machine learning over hand-annotated examples). An example of a synthesized rule is: 

// IF two objects move together THEN mechanical energy is produced. 
forall m, t, o 
isa(m,"move"), isa(t,"together"), isa(o,"two objects"), agent(m,o), arg(m,t) 
   ->  exists p, e 
        isa(p,"produce"),isa(e,"Mechanical energy"), agent(p,o), object(p,e), condition(p,m). 

We have used this approach to construct an initial KB containing approximately 30,000 rules from 
science texts and 15,000 rules from dictionary definitions.    

2.4 Question-Answering 

To answer a 4-way multiple choice question, the question is first converted to four true/false 
questions (one for each option) of the form "Is it true that Xi?". Each Xi is then converted into an 
inference rule using similar NLP machinery, with the important difference that the rule is to be 
proved, rather than asserted. To prove the rule, the LHS variables are existentially rather than 
universally quantified, then the result considered to hold for all variable values by the principle of 
Universal Generalization. For the earlier example (“What form of energy is being used when a 
person pushes a wooden block across the floor? (A) mechanical…”), the question interpretation 
for the correct option (A) looks: 

 



// IF a person pushes a wooden block across the floor using X THEN X is mechanical energy 
exists p, u, pu, b 
  isa(p,"a person"), isa(u,"used"), isa(p,"pushes"), isa(b,"a wooden block across the floor"), 
  agent(pu,p), object(pu,b), condition(u,pu), agent(u,p), object(u,x) 
     -> isa(x,"mechanical energy"). 

To “prove” this (or more precisely, derive a confidence for this), the LHS is asserted as the setup 
(known facts), the RHS is the goal to prove, and a (currently best-first) inference procedure 
searches for chains of reasoning from setup to goal.  

As mentioned earlier, soft matching (combining predicate and lexical methods) is used to trigger a 
rule with a degree of confidence, and an entailment service replaces equality. In this case, the rule 
shown earlier applies, the entailment service returning (among other things) a confidence that 
"pushes" entails "moves". An overall confidence in the goal is computed, and the answer option 
with the highest confidence returned. Note that soft matching may result in inference chains to 
incorrect answers also, but typically with lower overall confidence. 

In preliminary experiments, the inference system currently scores 60% on the target task (non-
diagram multiple choice questions on the NY Regents 4th grade science exam), using a small (68 
question) dataset of unseen test data, 5% above the best retrieval-based bag-of-word method we 
have developed. Equally importantly, the inference system returns an explanation for its 
conclusion, based on the inference chain that was used. The retrieval-based method submits each 
Xi as a search query to our corpus of text (using Lucene as the search engine), collects the Lucene 
score of the best-matching sentence retrieved for each Xi, and picks the answer option i with the 
highest score. This provides an initial indication that the approach is viable, but further 
experiments with significantly larger datasets are needed and planned. 
 

3. The Longer-Term Vision 

This work is significant because we are acquiring knowledge in the form of inference-supporting 
rules, allowing a previously inaccessible class of questions to be attempted. However, the work is 
also preliminary, with clear limitations in the current treatment of generics, confidences, and 
inference, that we continue to investigate. For our purposes here, we now describe three longer-
term themes we see as important to the longer-term vision. 

3.1 Richer Models 

Mapping natural language to semantic predicates canonicalizes the expressed knowledge, and 
allows general axioms (e.g., CAUSES is transitive) to be exploited for question-answering. More 
generally, we can identify families of semantic predicates that together can be used to model a 
phenomenon (e.g., next-event(), subevent() for processes; Q+, Q-, I+, I- for qualitative influences 
[8]) and that can be interrelated via axioms. A family of such predicates constitutes a modeling 
language, and their axioms can be seen as a piece of "computational clockwork" with which to 
model the world. These are useful because, if we map text onto one of these modeling languages, 
the system can then draw the conclusions sanctioned by the model. For example, if an extractor 
converts a paragraph about photosynthesis into an instance of a qualitative model (Q+, Q-, etc.), 
then axioms from the model can be used to reason about the process (e.g., less sunlight implies 
less O2 produced). A good example of this for processes is [9]. 

While we have used just a handful of semantic predicates so far, our longer-term picture of the KB 
includes a (small) collection of modeling languages, hand-built, and a (large) library of model 
instances expressed in those languages, extracted automatically. These will provide additional 
inferential power for question answering, exploiting the axioms of the modeling languages. 

3.2. Confidence Measures 

We currently do not have a good measure of confidence/reliability of extracted rules, and 
sometimes "bad" rules cause bad results. To reduce this problem, confidences could be associated 
with rules and used to bias reasoning (higher weight to apparently "good" rules). Signals for 
confidences can come from several places, e.g., repetition, use in (successful) question-answering 
tasks, degree to which other rules conflict with a given rule. 

 



3.3. Bootstrapping 

Our current pipeline (parseextractionaxiom synthesis) is noisy, with errors introduced at 
every stage. In many cases, e.g., bad PP attachment, the errors are "obvious" to a human reader 
because they conflict with the reader's knowledge of the world. Given that the system is acquiring 
world knowledge itself, an obvious and desirable approach is be to similarly exploit that acquired 
knowledge in future reading: Knowledge creates expectations to guide text interpretation, and text 
interpretation creates new knowledge. 

4. Summary 

Our goal is "knowledgeable machines", and our approach is the automatic acquisition of 
inference-supporting knowledge from text. We have identified some key requirements for the 
approach, and summarized a preliminary way of meeting them that, although involving substantial 
simplifications, has competitive performance on (unseen) test data. Further development of these 
techniques is essential if we are to build machines that have a richer understanding of the world.  
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