
TextJoiner: On-demand Information Extraction with
Multi-Pattern Queries

Chandra Sekhar Bhagavatula, Thanapon Noraset, Doug Downey
Electrical Engineering and Computer Science

Northwestern University
{csb,nor.thanapon}@u.northwestern.edu,ddowney@eecs.northwestern.edu

1 Introduction

Web Information Extraction (WIE) is the task of automatically extracting knowledge from Web
content. On-demand WIE systems such as KNOWITNOW [1] and TEXTRUNNER [2] allow users to
query the Web for a textual context that indicates a desired relation. For example, the context “$x
invented $y” indicates the Invented(x, y) relation. The WIE system is tasked with responding
in real-time with a list of argument tuples (e.g. <A.G. Bell, Telephone>) of the query
relation, extracted from the Web.

However, this on-demand WIE approach falls short for many queries, because individual textual
contexts face a difficult trade-off between precision and recall. As a simple example, the
patterns “the city $x is located in the state of $y” and “$x , $y” both express the relation
CityLocatedInState(x, y) to some degree, but the first has high precision and low recall,
whereas the second has low precision and high recall.

In this paper, we present a new approach to on-demand WIE that improves the precision and recall
of relation extraction. Our approach is conceptually simple: we move beyond queries for a single
textual context to consider queries that are conjunctions (i.e. inner joins) and disjunctions over
multiple contexts. For example, the above example could be expressed as an inner join across three
queries:

“city of $x” AND “states such as $y” AND “$x , $y”

Each of the three queries is individually high recall, and by restricting results to only those (x,
y) tuples that appear across all three queries, we can achieve high precision as well. The first two
queries ensure that $x and $y are of the proper “type” for the desired relation. We implement this
approach in an on-demand WIE system, TextJoiner (TJ).

TJ is faced with two challenges. The first challenge is ranking extractions for a given query based
on their estimated correctness. While repetition in a large corpus is an indicator of correctness for
individual relations [1], TJ must combine confidence estimates across multiple distinct relations.
The second challenge is to execute pattern-based extraction and joining at interactive speed. Here,
we solve both challenges using language models. TJ uses a combination of n-gram and neural
network models to retrieve extractions at interactive speed. TJ then ranks the extractions based on
their probabilities of occurrence in text, which are estimated by the language models. We show how
the language models can infer correct extractions that do not explicitly appear in the query contexts
in the corpus, but have high distributional similarity to extractions that do. TJ uses a novel approach
that leverages both textual and tabular data to estimate distributional similarity with neural network
language models.

Experiments with our system over the Wikipedia corpus demonstrate that TJ’s novel features
allow it to achieve higher precision in on-demand WIE when compared to baseline techniques and
TEXTRUNNER, over a variety of different queries. Finally, we make our system publicly available
on the Web.1

1http://websail-fe.cs.northwestern.edu/textjoiner/

1

http://websail-fe.cs.northwestern.edu/textjoiner/

2 System Description

In this section we describe the components and run-time processing of a query in TJ.

Query Format: A TJ query is a boolean expression in Conjunctive Normal Form. It is a
conjunction of clauses that are disjunctions of multiple sub-queries. Each sub-query consists of
three types of tokens: ground terms, variables and wildcards. A ground term is either a string literal
or an entity (specified as “[<entity name>]”). In our system, we consider each Wikipedia page as
an entity. A variable is denoted by a variable name prefixed by “$”. The only wildcard character
that TJ supports is “*”, which matches any single token. Each sub-query must contain at least one
ground term and at least one variable. In the example described in Section 1, “city of $x”, “states
such as $y” and “$x , $y” are sub-queries of clauses of the input query q = city of $x AND
states such as $y AND $x , $y. In “city of $x”, “city” and “of” are the ground terms
and $x is the variable.

Resources: TJ uses a combination of an n-gram language model (Mng) and a neural network
based word-vector model (Mwv) to return extractions for an input query. Mng enables efficient
pattern matching and n-gram probability estimation. Mwv maps each entity to an n-dimensional
vector embedding (we use n = 1, 000 in our experiments). The neural network vector embeddings
capture latent semantics. In particular, similar entities tend to appear nearby each other in vector
space, enabling TJ to perform set expansion to obtain new entities of the same type as a set of seed
entities by searching nearby the seeds in vector space. Further, for a given relation, pairs of entities
exhibiting the relation tend to be separated by a similar vector in the embedding space; we refer
to this vector as a relation vector [3]. Set expansion and relation vector estimation using Mwv are
essential for inferring relations that are not explicitly expressed in text.
As described earlier, TJ leverages both textual and tabular data in its models. We generated a data
set Dtxt containing text of all articles in Wikipedia, in which the anchor text of links was replaced
with their target entity identifiers.
To utilize data from Wikipedia tables, we make three important assumptions: (i) tables are oriented
row-wise, i.e. entities are mentioned in rows and column headers denote a relation between entities
in the same row, (ii) entities in the same column are of the same type, and (iii) the first column in
a table that has entities is the subject column of the table. In our experience, tables on Wikipedia
generally adhere to these assumptions.
Based on these assumptions, we created two more datasets: (i) Drt containing relation triples from
all tables in Wikipedia and (ii) Dc containing sets of entities that occur in the same column. For
example, from the first table on the “List of countries and capitals with currency and language”
page, we generated strings of the form “Algeria capital Algiers” denoting the relation
CapitalOf(Algeria, Algiers) to create Drt .2 The set of entities in the Country column
can be used to create Dc.
Mng is trained on the union of the datasets Dtxt and Drt using the Berkley LM package by Pauls
et. al. [4]. Mwv is trained using the word2vec package by Mikolov et. al. [5, 6, 3] on the union
of Dtxt and Dc to generate vector representation of entities in Wikipedia. Training the Mwv model
on the union of Dtxt and Dc is a crude way of combining information from text and tables into a
distribution based model. Exploring better techniques of combining textual and tabular data is part
of future work.

Run-time Processing: Given the query q, TJ evaluates its clauses in ascending order of the
number of variables they contain. For each sub-query in a clause, TJ uses Mng to find n-grams
that match its literal part and assigns variables with values from the matching n-grams. TJ allows
variables to only match entities. Variable assignments from a clause are used in subsequent clauses.
Iterating through all clauses results in a list of assignments, Ang , in which an assignment consists of
one value for each variable in q. TJ sorts Ang in descending order of a score obtained from a scoring
function (described later). The score of an assignment indicates TJ’s confidence of the assignment
being a correct extraction for a given input query. For our example query q, let Ang contain only
two tuples: <$x=Chicago; $y=Illinois> and <$x=Austin; $y=Texas>.
TJ then uses Mwv to infer new variable assignments such that they represent the same relation
as assignments in Ang . First, TJ uses distributional-similarity of entities to expand the set of
values of each variable in q. For our example query q, let the new set of values for $x be the
set X ={Denver, Los Angeles} and for $y be the set Y ={California, Colorado}.

2https://en.wikipedia.org/wiki/List_of_countries_and_capitals_with_
currency_and_language

2

https://en.wikipedia.org/wiki/List_of_countries_and_capitals_with_currency_and_language
https://en.wikipedia.org/wiki/List_of_countries_and_capitals_with_currency_and_language

Second, TJ computes the average of the vector offsets between values of pairs of variables in
each assignment (e.g. between values of $x and $y). TJ uses the top 20 assignments in Ang to
calculate this vector referred to as the average relation vector. Pairs of $x and $y, from X and
Y , whose relation vector is closest to the average relation vector, are collected into a new set of
assignments, Awv . Awv is also sorted using the same scoring function that is used to sort Ang .
For our example query q, Ang contains the following tuples: <$x=Denver; $y=Colorado>,
<$x=Los Angeles; $y=California>.
Finally, TJ merges Ang and Awv preserving the order of assignments and returns the final set of
assignments, A for the input query q.

Scoring Functions: To rank assignments, we experiment with three different scoring functions.
Each scoring function estimates the correctness of an assignment. Generally, the scoring functions
rank an extraction higher when its probability of extraction is larger, normalized by the unigram
probability of its arguments. A key challenge is how to combine signals of correctness across
multiple queries, and we experiment with three different methods. SL(a) assigns a score to an
assignment by using only the clause with the most number of distinct variables, as this clause is
expected to be the most important. SAll(a) uses all clauses to assign a score for an assignment,
multiplying scores across clauses. SR(a) also uses all queries, but is based on the assumption that the
relative positions of extractions in the clauses are more significant than the raw probability values.
SR(a) combines probabilities across queries by multiplying ranks, rather than raw probability values
as in SAll(a). Formally, for a given assignment a ∈ A and query q with n clauses, we define:

SL(a) = s(a, qn) (1)

SAll(a) =

n∏
i=1

s(a, qi) (2)

SR(a) =

n∏
i=1

rank(a, qi) (3)

using the following definitions:

s(a, qi) =

|qi|∑
j=1

P (qji \ a)∏
v∈V ar(qji)

P (av)

rank(a, qi) : rank of a, when assignments are sorted in ascending order of s(a, qi)
|qi| : number of sub-queries in the clause qi

qji : refers to the ith clause, jth sub-query in q

qji \ a : substitutes variables in qji with their values found in a

av : value of variable v in assignment a

V ar(qji) : set of variables in the sub-query qji
P (s) : n-gram probability estimate of the string s from Mng

3 Experiments

We conducted our experiments using a manually curated set of queries. The queries are listed in the
first column of Table 2. The corresponding TJ queries can be found on our project webpage.3

As described in Section 2, TJ uses data from both text and tables in Wikipedia. We also described
how TJ uses a combination of two models, Mng and Mwv, to return extractions for multi-pattern
queries. Technically, all features of TJ can be implemented using only an n-gram language model
built over Wikipedia text. Thus, to evaluate the usefulness of each additional component of TJ, we
measured the performance of three versions of our system - (i) TJng

txt uses only the n-gram language
model built from Wikipedia text. (ii) TJtxt uses both n-gram language model and the word-vector
model, but using only Wikipedia text. (iii) TJ is our complete system as described in Section 2.

3http://websail-fe.cs.northwestern.edu/textjoiner/

3

http://websail-fe.cs.northwestern.edu/textjoiner/

Table 1: Evaluating the impact of each component of the system.
TJng

txt TJtxt TJ
Precision@20 0.97 0.7 0.78
Recall’ 0.47 0.56 0.73
F1’ 0.64 0.63 0.76
Percentage of correct
extractions that were
inferred

0% 38% 16%

For this experiment, we chose a subset of 10 queries from our query set and manually labeled the
top 20 results returned by each system as true or false indicating an extraction’s correctness. Table
1 shows the results. Since it is difficult to define recall for our open ended relations, we adopt a
pooled-recall measure (Recall’) in which we pool all correct extractions across the three systems
and treat them as the set of correct extractions.

Table 1 shows the effectiveness of each component of TJ. In addition to the n-gram model, TJtxt also
uses a word-vector model to infer facts - i.e. find extractions that do not necessarily occur in the
context given in the query. The percentage of such inferred extractions increases from 0% in TJng

txt

to 38% in TJtxt which results in an improvement of recall between TJng
txt and TJtxt. This shows the

effectiveness of using a word-vector model in our system. Moreover, our final system TJ which uses
both Mng and Mwv, and both textual and tabular data, improves the recall further and achieves the
highest F1 score.

Table 2: Comparison of different versions of TJ and TEXTRUNNER. p represents precision and
“Count” is the total number of assignments returned. For systems for which we do not list counts,
the number of results returned is 20 for all queries.

TJR TJL TJ–1 TEXTRUNNER TJAll+Gap TJAll
Query No. Var p p Count p Count p Count p Time (s) p
Academy award
winners

1 1.00 1.00 20 1.00 20 0.95 20 1.00 5 1.00

Discredited theories 1 0.20 0.40 0 0.00 0 0.00 6 0.50 6 0.50
Drummers who are
also singers

1 0.20 0.35 0 0.00 1 0.00 20 0.80 5 0.80

List of musicals 1 0.95 0.95 19 0.95 5 0.80 19 0.95 6 0.95
List of theorems 1 0.55 0.55 3 0.15 20 0.10 7 0.43 6 0.55
Nobel Prize Win-
ners

1 1.00 1.00 20 1.00 20 0.80 4 1.00 6 1.00

Superheroes 1 0.85 0.85 19 0.95 15 0.73 3 1.00 5 0.85
Actors who played
villains

2 0.00 0.60 0 0.00 0 0.00 1 1.00 304 0.75

City mayors 2 0.00 1.00 20 1.00 20 1.00 20 1.00 13 1.00
Companies & their
product

2 0.95 1.00 0 0.00 5 1.00 20 1.00 12 1.00

Company ceo 2 0.50 0.75 12 0.60 3 1.00 7 1.00 18 0.70
Countries Invasion 2 0.35 0.50 13 0.65 20 1.00 5 1.00 14 0.50
Country capitals 2 0.95 1.00 3 0.15 20 1.00 1 1.00 12 0.95
Discredited theories
with their authors

2 0.25 0.40 0 0.00 0 0.00 1 1.00 12 0.40

Drummers & their
bands

2 1.00 1.00 20 1.00 0 0.00 20 1.00 11 1.00

Game designer &
their games

2 0.70 0.75 0 0.00 4 0.00 13 0.92 11 0.75

City-Country 2 0.10 1.00 9 0.45 20 0.25 2 1.00 44 1.00
Citiy-State 2 1.00 1.00 1 0.05 20 0.00 20 0.80 112 0.80
Countries & their
official languages

2 0.95 0.75 14 0.70 20 1.00 20 0.95 21 0.95

Nba stars & their
teams

2 0.75 0.80 0 0.00 20 0.85 12 1.00 12 0.90

Novels & authors 2 0.45 0.70 0 0.00 29 0.38 8 1.00 12 0.70
Scientists & their
discoveries

2 0.35 0.35 16 0.80 20 0.80 4 1.00 12 0.35

US city mayors 2 1.00 1.00 0 0.00 20 0.80 20 1.00 14 1.00
City-state-country 3 0.40 1.00 0 0.00 0 0.00 20 0.80 215 0.80
MAP@20 0.60 0.78 0.39 0.52 0.93 0.80

Table 2 shows the performance of the following systems:

4

TJR: This method uses the scoring function SR(a) described in the previous section.
TJL: This method uses the scoring function SL(a) described in the previous section.
TJ–1: To evaluate the usefulness of enabling joins, we compared TJ with a version of TextJoiner

that does not allow joins. Each query is rewritten as a single pattern.
TEXTRUNNER: We also compared TJ with an existing on-demand IE system TEXTRUNNER.

While TEXTRUNNER does not allow joins, it does allow constraining variables by Freebase types.
We use these constraints when possible.

TJAll: This method uses the scoring function SAll(a) described in the previous section.
TJAll+Gap: Queries such as “us state $x” can only have a fixed number of bindings that are

factually correct. For such sets, the score of a top ranked binding will be significantly higher than
the score of a binding at the bottom. We try a simple approach to predict when the bindings start to
become irrelevant. In this system, we cut off the list of results where the drop in the score between
consecutive assignments is maximized. This method achieves the highest precision, but the number
of results returned drops by 50%. Hence, we selected TJAll as our final version of TJ.

4 Related Work

As discussed in the introduction, our work generalizes the KNOWITNOW system to allow joins
across multiple distinct queries. Further, TJ can infer novel extractions using its Mwv distributional
similarity, and leverages tabular data along with text. In our experiments, each of these components
of TJ is shown to improve accuracy.

Our work is closely related to query interfaces for Open Information Extraction. TEXTRUNNER
provides a query interface to binary relation tuples extracted from the Web [2]. Cafarella et. al. [7]
present a system for structured query access to unstructured text. Unlike these systems, TJ does not
commit to any intermediate data model. Instead, it matches user queries directly against the text
at run-time, using language models. Our experiments show that our system is more accurate than
TEXTRUNNER on our workload.

Sekine’s [8] on demand IE system extracts salient relations for a given topic from a given corpus.
Unlike that work, TJ allows users to query for a particular relation, over a large corpus. Yin et. al.
[9] proposed a system that extracts facts from structured data on the web. By contrast, our focus is
on performing joins and incorporating unstructured text data and semi-structured tables. Recently
Akbik et. al. [10] introduced an exploratory relation extraction system which allows multi-pattern
relation extraction. But, unlike TJ, this system is restricted to binary relations and extraction of
facts is performed pre-emptively following the idea of Preemptive Information Extraction [11]. This
work also introduces the includes user driven relation extraction, which could be an interesting
enhancement for TextJoiner.

5 Conclusion and Future Work

In this paper, we introduced and evaluated the technique of using conjunctions of extraction patterns
for WIE. We presented a system, TextJoiner, that can execute pattern-based extractions and joins
at run-time. We showed how TextJoiner uses language models to infer facts for a relation even
when the facts are not explicitly stated in text. We also presented methods to rank these extractions
based on their estimated correctness. We showed that using a combination of language models and
combining data in text and tables on the Web improves pattern-based fact extraction. We also made
our system publicly available.

In future work, we would like to explore ways to automatically generate query patterns for a relation.
A method to convert natural language questions into TJ query format is also desirable. Exploring
better ways to combine textual and tabular data is also part of future work. For relations that have
a limited number of extractions, automatically filtering out irrelevant extractions is an interesting
direction of future work. TJAll+Gap is our simple approach towards solving this problem, but more
sophisticated techniques need to be introduced in the future.

5

Acknolwedgments

This research was supported in part by NSF grant IIS-1351029 and the Allen Institute for Artificial
Intelligence.

References

[1] Michael J Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Knowitnow: Fast,
scalable information extraction from the web. In Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, pages 563–
570. Association for Computational Linguistics, 2005.

[2] Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and Mausam Mausam.
Open information extraction: The second generation. In IJCAI, volume 11, pages 3–10, 2011.

[3] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746–751. Citeseer, 2013.

[4] Adam Pauls and Dan Klein. Faster and smaller n-gram language models. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 258–267. Association for Computational Linguistics, 2011.

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[7] Michael J Cafarella, Christopher Re, Dan Suciu, Oren Etzioni, and Michele Banko. Structured
querying of web text. In 3rd Biennial Conference on Innovative Data Systems Research
(CIDR), Asilomar, California, USA, 2007.

[8] Satoshi Sekine. On-demand information extraction. In Proceedings of the COLING/ACL on
Main conference poster sessions, pages 731–738. Association for Computational Linguistics,
2006.

[9] Xiaoxin Yin, Wenzhao Tan, and Chao Liu. Facto: a fact lookup engine based on web tables. In
Proceedings of the 20th international conference on World wide web, pages 507–516. ACM,
2011.

[10] Alan Akbik, Thilo Michael, and Christoph Boden. Exploratory relation extraction in large text
corpora.

[11] Yusuke Shinyama and Satoshi Sekine. Preemptive information extraction using unrestricted
relation discovery. In Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational Linguistics,
pages 304–311. Association for Computational Linguistics, 2006.

6

	Introduction
	System Description
	Experiments
	Related Work
	Conclusion and Future Work

