
Concretely Annotated Corpora

Francis Ferraro Max Thomas Matthew R. Gormley
Travis Wolfe Craig Harman Benjamin Van Durme

Human Language Technology Center of Excellence
Johns Hopkins University

1 Introduction

Richly annotated documents are a part of many knowledge extraction efforts. Such efforts may
include knowledge base population (KBP), a task where it is important to recognize certain rela-
tionships between entities in text in order to add those facts to an entity-centric database. Document
annotations might also serve as grist for training various distributional models of meaning.

In either setting, it is common for a research group to generate bulk annotations over a preferred
corpus internally, using their own tools, programming languages and formats, but then reporting on
this as merely an engineering pre-processing step not worth describing in significant detail. Worse,
these annotated collections are often not available to the rest of the community, making it difficult
to perform apples-to-apples comparison of the “real research”.

We previously sought to address these issues with the creation and release of the Annotated Giga-
word corpus [1], a resource comprising 4.5 billion tokens of English newswire text, processed with
a collection of then state-of-the-art tools from the community. The LDC distributed this collection
[2] along with a Java utility library to easily work with the data in a variety of popular formats.1

Here we describe a new effort that follows this same idea, with various extensions and improve-
ments. Under the heading Concretely Annotated, we are processing a variety of standard corpora
with multiple popular NLP tool-chains, collected together under a single data schema we have cre-
ated that we refer to as CONCRETE. We envision a multimodal workflow, where, e.g., knowledge
can be extracted from both text and audio. We developed CONCRETE to record and share annotations
on structured human language data – both text and speech. Backed by Apache Thrift, this schema
allows for direct programmatic access to the annotations across a variety of popular languages.

In this new data set, we include multiple tool outputs producing the same types of annotations; these
annotations are represented together under a shared tokenization as different annotation theories. For
example, these new resources include ACE ontology relations [3] – produced automatically by both
BBN’s SERIF system [4] and an in-house JHU toolchain competitive to state-of-the-art (in prep) –
as well as semantic frame analyses – produced by SEMAFOR [5] and an in-house semantic frame
parser (in prep). As we demonstrate in this paper, CONCRETE’s common storage and annotation
format allow multiple, independently-developed systems to be pipelined together. We also believe
that developers will be able to leverage complementary aspects of repeated annotation types.

2 Facilitating Knowledge Extraction from Text

Many, including Chuch & Hanks (1990) [6] and DIRT [7], have considered the connections be-
tween shallower linguistic analyses and deeper semantic understanding ([8, 9, 10, 11, 12]). Multiple
recent efforts, e.g., script learning [13], relation discovery [14], and information extraction [15],
have utilized richer linguistic annotations on large corpora to improve knowledge extraction. As

1For example, all syntactic parse trees can be printed to a console as a phrase structure parse, whereas all
NER labels are output in a CoNLL style.
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recent efforts in knowledge base population have shown [16], huge, highly annotated corpora can
be leveraged to improve inference.

Multiple previous efforts have attempted to ensure the community has easy access to large and suf-
ficiently annotated data. Annotated Gigaword [1] ran state-of-the-art tools on a single, large dataset
of ten million documents in order to create a standard reference. ILLINOISCLOUDNLP [17] devel-
oped a framework in which users could annotate individual large datasets on a remote, distributed
compute grid, allowing annotated data to be created “on demand.” Goldberg and Orwant (2013) [18]
released counts of “syntactic n-grams” – dependency paths spanning n words – from three million
books, to facilitate PMI-inspired efforts. While these approaches, among others, all have their mer-
its, our focus is on creating larger and richer common corpora that promote collaboration and have
the potential to facilitate multimodal research.

In addition to adding semantic annotations, this work corrects some of the losses that arose from
the Annotated Gigaword pipeline (AG). In AG there was a 2% loss in sentences arising to a bug in
Splitta, which AG used to split sentences [19]. Second, coreference resolution only included non-
singleton entities (those that have at least two mentions). Borrowing terminology from GAF [20],
we make a distinction between (conceptual) instances of a situation or an entity, and the individual
mentions of those instances in text. In NLP terms, this means we reify a coreference chain to stand
for an entity, with the items in that coreference set the representative entity mentions. Therefore, we
need to record singletons, even though suppressing singleton mentions is consistent with coreference
evaluation [21]. To quantify the impact of these missing mentions, we employed a simple heuristic
that matches NER spans with existing entities2. We found that more than 1.6 million documents
(16% of AG) would have had ten or more additional PER, LOC or ORG entities. This does not
consider non-location or organization entities, which can be of interest in open-domain IE efforts.

3 Concrete

CONCRETE is an extensible data schema aimed at capturing a wide variety of natural language
annotations over both structured and unstructured data. We sought a common format that reduces
the complexity associated with both using different corpora (unique file formats or markup) as well
as interfacing with or creating different annotation tools and analytics (programming languages and
APIs). Some data types can be required to be present, providing some guarantees about what will
be present in any given annotation layer and helping to prevent the accidental omission of critical
information. These guarantees extend to the types of individual annotations, limiting a potential
source of bugs. For instance CONCRETE annotation creators cannot accidentally populate a field
with the wrong type of object, while CONCRETE readers do not need to manually cast values.

We further sought a representation amenable to multimodal data. While most of our current ef-
forts have been focused on text processing, CONCRETE also supports audio data. We envision a
multimodal workflow wherein automatic knowledge extraction is not limited to text corpora. The
simultaneous interest that multiple fields share for grounded language tasks suggests that researchers
will be looking for easy-to-use multimodal corpora and/or data exchange formats.

Implementation The CONCRETE schema is a set of Apache Thrift [22] schema files specifying 51
interworking structs. Structs contain instances of other structs, “primitive” types (e.g., strings and
ints), and lists or maps of structs or primitives. Thrift generates schema-specific classes for many
popular and widely used programming languages, including Java, Python, C++ and Javascript.3 The
array of supported languages allows data to be shared easily across projects, lessening barriers to-
ward collaborative efforts. Thrift also provides backwards compatibility: additions to the schema do
not invalidate previously generated data, making previously annotated data compatible with future
changes. (CONCRETE was initially based on Google’s Protocol Buffer technology; we switched to
Thrift to better align with related community standards such as the StreamCorpus format employed
in NIST’s TREC KBA, or the ADEPT schema used in the ongoing DARPA DEFT program.4)

2 We compare a document’s maximal NER spans to every entity mention officially recorded in [1]. We
report as “missing mentions” only those NER spans that do not overlap with a recorded mention.

3In object-oriented languages, a struct becomes a class.
4See https://github.com/google/protobuf/, https://github.com/trec-kba/streamcorpus and

http://www.darpa.mil/opencatalog/DEFT.html
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Document Representation CONCRETE defines a structure-preserving wrapper (called a
Communication) around tokenized data. The tokenized data are realized by either a list or lattice
of Tokens. In many text applications, the collection will be a TokenList, a flat sequence of
Tokens; when capturing output from speech systems or machine translation, the collection may be
better represented as a TokenLattice. All annotations are defined on these Tokens.

A Communication segments the observed data into different Sections, each of which main-
tains a list of Sentences. Every Sentence contains the collection of Tokens – either a
TokenList or TokenLattice, encapsulated as a union record in a containing Tokenization
struct. As explained shortly, Tokenizations allow us to succinctly keep related annotations to-
gether. As in [23], CONCRETE uses global byte offsets to index into the data: when representing
text, we use character offset spans, and when representing audio, we use start and end time spans.
Sections, Sentences and Tokens maintain these spans.

Annotation Representations CONCRETE allows both intrasentential and intersentential annotation
theories. The former includes standard tagging tasks (e.g., part-of-speech, named entity recogni-
tion, lemmatization, cached out into TokenTaggings) and syntactic analyses (constituency or
dependency parse). Because we store intrasentential annotations within every Tokenization,
we keep, e.g., individual token labels close to the tokens themselves. By manipulating a single
Tokenization, a developer has easy access to its different token taggings. We are not restricted
in the types of TokenTaggings we can add: a tagging is agnostic to its actual meaning. We can
just as easily store language ID for code-switched tweets as we can per-token sentiment.

Intersentential annotations revolve around mention identification and coreference, in a manner akin
to [20], with the latter recording equivalent groupings in the former. CONCRETE implements men-
tions and coreference sets for both entities and situations – a term derived from the event semantics
literature [8, 24, 12] that broadly covers events, relations, facts, sentiments, and beliefs. Mentions
point into a specific tokenization, recording both byte offsets and token indices. Although individ-
uals are constrained to a specific Tokenization, coreference spans multiple Tokenizations.
As a result, we store all mention and coreference theories as members of a Communication.

Crucially, a Communication may have the same type of annotation multiple times. For instance,
each Tokenization may have multiple, competing NER or dependency parse theories, and a
Communication may have any number of parallel or competing, e.g., entity coref theories.

Open-Source Release Our primary development languages are Java, Python and C++: as such, we
have written utility libraries in these three languages. These libraries are in active development; they,
along with the CONCRETE schema definition files, will be released as open source projects.5

4 Corpora

We process four different corpora, covering formal newswire, casual internet media and Wikipedia.
We mapped each corpus to CONCRETE, maintaining paragraph or section structure when possible.

English Gigaword v5 The Gigaword corpus [25] contains 4.5 billion words from 10 million English
newswire articles, from 1994 - 2010. The data are sectioned into paragraphs. We maintain this
structure and record the minimal metadata, such as dateline, within our CONCRETE schema.

Annotated NYT The New York Times Annotated Corpus [26] is a collection of 1.8 million New
York Times articles from 1987 - 2007. These articles have been heavily enriched with nearly fifty
types of metadata by NYT staff. These metadata include a hierarchical taxonomic classification
into different types of documents (e.g., Opinion vs. News/U.S./Rockies), an originating
newsdesk (e.g., Business desk vs. Classifieds desk) and a list of prominent people, locations
and organizations mentioned in the article.

ColdStart The 2014 ColdStart KBP track of NIST’s Text Analysis Conference (TAC) is based on
a corpus of roughly 50,000 documents, with ∼70% derived from the Gigaword corpus and the
remainder a collection of more informal blog and discussion forum posts [27]. This collection
was preprocessed by the ColdStart organizers with BBN’s Serif tool and then released in order that
participants would have equal access to the output of a competitive information extraction toolchain.

5https://hltcoe.github.io/

3

https://hltcoe.github.io/


Table 1: Tools and types of annotations produced, with some producing multiple versions of a type.

Tokens Syntax Entities Situations
POS Lemma NER CP DP Mention Id. Coref

JHU X X X XXX
BBN SERIF X X X X X X

CMU SEMAFOR X X X
STANFORD CORENLP X X X X XXX X X

Wikipedia Previous work has shown that Wikipedia is a useful resource for knowledge base con-
struction [28, 29, 30]. We process Wikipedia in order to make available a text that is both encyclo-
pedic and open access, akin to WaCkypedia EN, which followed from ukWaC [31].

5 Annotations

We process all corpora (§4) with four different suites: Stanford’s CORENLP [23], BBN’s SERIF [4],
CMU’s SEMAFOR [5] and an in-house JHU pipeline.We modified or developed each of these tools
to read in and operate on the mapped CONCRETE data from above. See Table 1 for an overview of
the different types of annotations each tool adds; note that a tool may add more multiple theories for
each type of annotation, while multiple tools may add the same type of annotation.

In order for all annotations to exist in parallel, we force all tools to operate on a single (PTB-style)
tokenization and sentence segmentation, obtained from the CORENLP pipeline.6 We label individ-
ual tokens with two part-of-speech theories and three named entity theories (CORENLP, SERIF and
JHU [32]), and a lemmatization theory (CORENLP). We further use CORENLP and SERIF to add
constituency parses. These CORENLP parses are converted to chunks using the same method as
the CoNLL-2000 shared task [33]. In total, three different tools produce five dependency parses:
CORENLP applies human-written rules to deterministically convert the Stanford constituency parse
into the three types of Stanford dependencies [34], while CMU’s Stacked MST Parser [35] (a vari-
ant of [36]’s minimum spanning tree parser) and a fast, first-order dependency parser from JHU [37]
each provide a statistically determined dependency parse.

We record three types of situation mentions: frame analyses based on FrameNet [9, 38, 39],
Propbank-style semantic role labeling [40] and ACE relation extraction [3]. We include frame
analyses from both SEMAFOR [5, 41] and an in-house log-linear staged FrameNet parser (article
in prep), where we tune the latter for high recall annotation. Semantic role labeling is done via a
competitive system [37, JHU]. We extract and record dual ACE relations using both SERIF and an
in-house project that leverages word embeddings to be competitive with state-of-the-art (article in
prep.). As a result of how “situations” are defined in the linguistics literature and in CONCRETE,
most arguments of SituationMentions point to an EntityMention. All suites contribute
to the parallel entity mention identification theories, but only SERIF and CORENLP provide entity
coreference atop their own mention identifications (singleton mentions included). The JHU entity
mentions are ACE-style named entities from an in-house variant of prior work [32].

6 Utilities and Open-Source Release

We are releasing CONCRETE and utility libraries, including interfaces for Java, Python and C++, as
open-source projects at https://hltcoe.github.io/. The Java and Python utility libraries
can be easily downloaded or installed with Maven and PyPI, respectively. The above URL also has
the data and annotations that can be freely-released (e.g., Wikipedia).

The language-specific interfaces and utilities are in active development, though they currently pro-
vide only basic annotation retrieval, e.g., providing Tokenizations for an EntityMention in

6 We allow a destructive tokenizer; CORENLP “Americanizes” words, e.g., replacing an “-our” suffix with
“-or” in “colour”, for example. Certain non-content word normalizations help to alleviate token sparsity.
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Figure 1: Example output from a command-line utility providing easy access to plain-text versions
of CONCRETE annotations. 1a demonstrates Token annotations, plus a dependency parse, while 1b
shows a constituency parses.

(a) CoNLL-style output.

$ ./concrete_inspect.py example.concrete \
--pos --ner --lemmas --dependency

INDEX TOKEN LEMMA POS NER HEAD
----- ----- ----- --- --- ----
1 John John NNP PERSON 4
2 ’s ’s POS O 1
3 daughter daughter NN O 4
4 Mary Mary NNP PERSON 5
5 expressed express VBD O 0
6 sorrow sorrow NN O 5
7 . . . O

(b) Constituency parse output.

$ ./concrete_inspect.py \
example.concrete \
--treebank

(ROOT
(S (NP (NP (NNP John)

(POS ’s))
(NN daughter)
(NNP Mary))

(VP (VBD expressed)
(NP (NN sorrow)))

(. .)))

which it appears. Due to their open-source nature, they can be extended to handle more complex
tasks, such as intersecting multiple annotations.7

Since the Thrift format is not viewable as plain-text, we have developed tools that allow researchers
to quickly inspect a Communication at the command line. This utility also provides researchers
with easy access to plain-text versions of CONCRETE annotations. See Figure 1 for an example. For
instance, Token-level annotations can be output in a CoNLL-like format (1a), while constituency
parses can be returned as standard S-expressions (1b). With this utility, existing systems can use the
annotations provided in this paper without modifying code.

7 Conclusion

Our final data set contains more than approximately 400 million sentences. While at time of print
the full annotation processing is in progress, approximately 1 TB of (non-compressed) annotations
have been produced from initial corpora sizes of approximately 40 GB of uncompressed text. Fully
processing the corpora through CORENLP took approximately 900 CPU-hours, or three days with
300 cores (∼115 tokens/second). The other tools we use range from 150 to 1,000 tokens/second.

Efforts such as DeepDive [16] exemplify the community’s interest in large scale knowledge base
creation fostered by equally large text corpora processed with state-of-the-art NLP tools. Further,
efforts such as [13, 42] in event and distributional semantics require a similar sort of processed input.
As an effort to democratize such large scale efforts, we provide several different theories of token
taggings, entity mentions, entities, and situations; researchers can investigate what particular tools
are optimal for their use case, or more easily conduct systems combination research. Researchers
can access the data by using the libraries mentioned earlier, or creating their own Thrift bindings for
the programming language of their choice.
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