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Abstract

In this paper, we argue that many Automatic Knowledge Base Construction
(AKBC) tasks which have previously been addressed separately can be viewed as
instances of single abstract problem: multiview semi-supervised learning with an
incomplete class hierarchy. We also present a general EM framework for solving
this abstract task, and summarize past work on various special cases of multiview
semi-supervised exploratory learning.

1 Introduction

Traditional semi-supervised learning (SSL) techniques consider the missing labels of unlabeled dat-
apoints as latent/unobserved variables, and model these variables, and the parameters of the model,
using techniques like Expectation Maximization (EM). We consider two extensions to traditional
SSL methods which make it more suitable for AKBC tasks. First, we consider jointly assigning
multiple labels to each instance, with a flexible scheme for encoding constraints between assigned
labels: this makes it possible, for instance, to assign labels for multiple levels from a hierarchy.
Second, we account for another type of latent variable, in the form of unobserved classes. In open-
domain web-scale information extraction problems, it is an unrealistic assumption that the class
ontology or topic hierarchy we are using is complete. Our proposed framework combines structural
search for the best class hierarchy with SSL, reducing the semantic draft associated with erroneously
grouping unanticipated classes with expected classes.

Together, these extensions allow a single framework to handle a large number of AKBC tasks,
including macro-reading, micro-reading, multi-view macro- or micro-reading, alignment of KBs to
wikipedia or on-line glossaries, and ontology extension. Below we will summarize how these tasks
can be modeled in this framework, and then introduce a general framework for solving the multiview
semi-supervised exploratory learning problem.

Following are various AKBC tasks that the Exploratory Learning framework can help with.

• Macro-reading: This task refers to semi-supervised classification of noun-phrases into a big
taxonomy of classes, using distributional representation of noun-phrases. We proposed an ex-
ploratory learning method [11] for macro-reading that could reduce the semantic drift of seeded
classes hence helping the traditional semi-supervised learning objectives.

• Micro-reading: Micro-reading differs from macro-reading in the sense that instead of using
collective distributional features of a noun-phrase, we are trying to disambiguate an occurrence
of noun-phrase w.r.t. the local context within a sentence or paragraph. We have applied our
exploratory learning technique for clustering NIL entities in the KBP entity discovery and linking
(EDL) task [7]. We are working on using such hierarchical semi-supervised learning techniques
for the task of word sense disambiguation by considering occurrences of all monosemous words
as training data and polysemous word occurrences as test data. In these experiments, we use the
WordNet synset hierarchy to deduce ontological constraints.
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• Multi-View Macro(/Micro)-reading: This task refers to what the “Macro-reading” does, plus
collecting signals from multiple data views. E.g. NELL [4] proposed an information extraction
system that classifies noun-phrases into a class hierarchy using clues from 2 different sources:
text patterns occurring in sentences and semi-structured data in the form of lists and tables. We
proposed a multi-view semi-supervised learning method [9] for this task. An example of “Multi-
view micro reading” is a word sense disambiguation task where there are multiple data views of
word synsets. E.g., resources like WordNet, Wiktionary contain for each word sense, a gloss and
a set of example usages. One can use the glosses and example usages as multiple views to train
multi-view exploratory learning models.

• Alignment of online glossaries to an existing Knowledge Base: This task can also be viewed
as a gloss finding task for an existing gloss-free knowledge base. We proposed a hierarchical
semi-supervised learning method, named GLOFIN [12] for this task. GLOFIN does entity sense
disambiguation by classifying a mention of an entity from a potential gloss, into knowledge base
categories while incorporating the ontological constraints. A KB with glosses has been shown to
be helpful for the task of entity recognition and disambiguation from search queries [13, 5].

• Ontology extension: Most of the concept or topic hierarchies available are incomplete to repre-
sent entities present on the Web. This task refers to the problem of discovering new classes that
can be added to existing concept hierarchies to make them representative of the real world data.
Many techniques have been proposed [15, 18, 17] with similar goals, however they are applicable
in limited settings. We proposed a unified hierarchical exploratory learning technique OptDAC-
ExploreEM that can populate known seeded classes in an ontology along with extending it with
newly discovered concepts while taking care of ontological constraints [10, 8].

• Relation learning: All the tasks mentioned above are about discovering new concepts or new
instances of existing concepts, however an important challenge for existing knowledge bases is the
sparsity of relations. We hypothesize that along with concept learning, our proposed exploratory
learning techniques can also be applied to the problem of relation learning.

2 Generic Exploratory Learning Framework

Expectation Maximization (EM) is a popular technique for estimating parameters for a semi-
supervised learning task. In a typical EM setting, the M-step finds the best parameters θ to fit the
data X , and the E-step probabilistically labels the unlabeled datapoints with a distribution over the
known classesC1, C2, . . . Ck. In some variants of EM, including the ones we consider here, a “hard”
assignment is made to classes instead, an approach named classification EM [6]. Our exploratory
version of EM differs in that it can introduce new classes Ck+1 . . . Cm during the E-step. Algorithm
1 describes the proposed generic Exploratory Learning framework. It can handle possibly multiple
data views, and possibly incomplete class hierarchies. Since the EM algorithm can be used for both
classification and clustering tasks, we will use the terms “class” and “cluster” interchangeably.

Handling Multiple Data Views

This step is done in Line 11 of Algorithm 1. Here, we are considering a scenario where the infor-
mation about datapoints is coming from multiple views. For instance consider the Web document
classification task with 2 data views, the text within the document and the anchor texts of its inbound
hyper-links. Similarly, in an information extraction task to populate a Knowledge Base (KB) like
NELL [4], each noun-phrase to be classified has different feature sets or data views; e.g., surround-
ing text contexts, HTML table occurrences, morphological features etc.

We performed extensive comparison of different ways of combining information from multiple
views [9] on nine different multi-view datasets. We found that simple techniques like taking sum-
mation of scores generated by each view, or concatenating feature sets from multiple views work
reasonably well, and act as hard to beat baselines. Our proposed MAXAGREE method [9] improved
performance over above mentioned baselines, by decoupling the label assignments in each view and
adding a soft constraint for them being same across views. Further the hierarchical extension of
MAXAGREE [9] gave state of the art performance on entity classification task for NELL KB with
very few seeds.

2



Algorithm 1 Generic Exploratory Learning Algorithm
1: function Exploratory EM (Xl, Y l, Xu, Zk): θk+m, Zk+m, Y u

2: Input: Xl labeled data points (In case of v data views: Xl(1) . . . Xl(v)); Y l labels of Xl; Xu unlabeled
data points (In case of v data views: Xu(1) . . . Xu(v)); Z0 manually input constraints on k seed classes
(subclass-superclass or mutual-exclusion kind); Pnew probability of creating a new class

3: Output: {θ1, . . . , θk+m} parameters for k seed and m newly added classes (Class j in case of v data
views: θ(1)j . . . θ

(v)
j ); Zk+m Set of class constraints between k +m classes; Y u labels for Xu

4: h = height of ontology that is part of Zk
5: Initialize classifiers θj for class Cj using seeds provided for Cj
6: while class assignments AND #classes not converged do
7: kold = #classes before the E step
8: Log-likelihood BaseLL = logP (X|θ(t)kold , Z

(t)
kold

)

{E step: (Iteration t) Classify each datapoint at each level}
9: for i=1 to |X| do

10: Find P (Cj |Xi) for all classes Cj
{If there are v data views then combine scores from all views }

11: P (Cj |Xi) = ComputeCombinedMultiViewScore(X(1)
i . . . X

(v)
i , θ

(1)
j . . . θ

(v)
j )

12: if check if NewClassCreationCriterion(P (Cj |Xi), Xi) is satisfied then
13: Z(t) = UpdateConstraints({Xl ∪Xu}, {Y l ∪ Y u}, Z(t))
14: end if
15: Y

(t)
i = ConsistentAssignment(P (Cj |Xi), h, Z(t))

16: end for
17: knew = #classes after the E step
18: Log-likelihood ExploreLL = logP (X|θ(t)knew

, Z
(t)
knew

)

{M step: Recompute model parameters based on Y (t) }
19: if ModelSelectionCriterion(kold, BaseLL, knew, ExploreLL) selects exploratory model then

{Adopt the new model with knew classes}
20: θ

(t+1)
knew

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)knew

, Z
(t)
knew

); Z(t+1) = Z(t)
knew

21: else
{Keep the old model with kold classes}

22: θ
(t+1)
kold

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)kold , Z

(t)
kold

); Z(t+1) = Z(t)
kold

23: end if
24: end while
25: end function

Dynamically Introducing New Classes

This step is done in Line 12 of Algorithm 1. Here, we make a locally optimal decision about whether
to create a new class/cluster for a particular datapoint. We have access to labels of all the documents
already labeled in the current E step, and the probability of this particular datapoint belonging to any
of the existing classes/clusters.

Our intuition is that, for a datapoint x with posterior class probabilities for k existing classes be-
ing P (Cj |x), a new class should be introduced to hold x if P (Cj |x) is close to uniform. We have
proposed two heuristic based criteria to achieve this [11]. In the JS criterion, we require that Jensen-
Shannon divergence between the posterior class distribution P (Cj |x) to the uniform distribution
be less than 1

k . The MinMax criterion is a somewhat simpler approximation to this intuition: a
new cluster is introduced if the maximum probability is no more than twice the minimum probabil-
ity. One can also train a classifier to predict when to create a new class based on the training and
validation sets. The Jensen-Shannon divergence, class skew ratios etc. can act as features of this
classifier.

Handling Ontological Constraints

This step is done in Lines 13 and 15 of Algorithm 1. Consider a toy example of ontological class
constraints in Figure 1. Here, we can see two kinds of class constraints imposed by the ontology. Fol-
lowing are example constraints: (1) The “Subset” constraint between “Fruit” and “Food” categories
suggests that if a datapoint is classified as “Fruit”, then it should also be classified as “Food”. (2) The
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Figure 1: An example of ontological class constraints.

“Mutual Exclusion” constraint between “Food” and “Organization” says if a datapoint is classified
as “Food”, then it should not be classified as “Organization”, and vice versa. Let {C1, . . . CK} be
the Knowledge Base (KB) categories. Let Subset be the set of all subset or inclusion constraints, and
Mutex be the set of all mutual exclusion constraints. In other words, Subset = {〈i, k〉 : Ci ⊆ Ck}
and Mutex = {(i, k) : Ci ∩ Ck = φ}. The class constraints referred to as Zk in Algorithm 1 can be
defined as Zk = {Subset, Mutex}.
We define yji ∈ {0, 1} as an indicator variable specifying whether xi belongs to Cj . The category
membership probabilities {P (Cj |xi)} estimated in the E step, are used to compute the indicator
variables {yji, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ K}. Our GLOFIN algorithm [12], proposed a Mixed-Integer
Program (MIP) per datapoint xi to estimate yji’s. This MIP takes the scores {P (Cj |xi)}, and class
constraints Zk as input and produces a consistent bit vector of labels yji’s as output. Finding such
consistent label assignments is referred as “ConsistentAssignment” in Algorithm 1 Line 15.

Further, when we add a new class Cnew to the ontology, class constraints associated with Cnew are
updated in the “UpdateConstraints” step in Algorithm 1 Line 13. E.g. consider we add a new class
node as a child of ‘Food’ in the toy ontology in Figure 1, then we will update class constraints Z
to include a subset constraint: Cnew is subset of ‘Food’, and mutual exclusion constraints between
Cnew and its siblings ‘Vegetable’ and ‘Fruit’.

Trade-off between Fitting the Available Data and Creating Too Many Classes

Note that adding a new class always improves log-likelihood of data, however creating too many
new classes would result in over-fitting (one class per datapoint always result in the best likelihood).
Hence we optimize the penalized log-likelihood of data by penalizing the model complexity, by
applying model selection techniques (Lines 19-23 of Algorithm 1). At the end of every E step, we
evaluate two models, one with and one without adding extra classes. These two models are scored
using a model selection criterion, and the model with best penalized data likelihood score is selected
in each iteration. For model penalties, we tried multiple well known criteria like BIC, AIC and
AICc. The extended Akaike information criterion (AICc) [3] suited best for our experiments since
our entity classification datasets have large number of features and small number of data points.
Further we discard singleton clusters at the end of each E step, avoiding a new cluster per outlier
datapoint. [11] discusses the similarity of our Exploratory EM algorithm with the Structural EM
algorithm proposed by Friedman [14], and hence its convergence to the local maxima for penalized
log likelihood.

Incorporating Different Document Representations

Computations done in Lines 10, 20, and 22 of Algorithm 1 depend on a particular choice of
the document representation. A variety of techniques may be used for computing probabilities
P (Cj |xi; θj), where θj is the current estimate of model parameters for category Cj . We briefly
describe one such choice here: the semi-supervised multinomial Naive Bayes [16]. In this model
P (Cj |xi) ∝ P (xi|Cj) ∗ P (Cj), for each unlabeled datapoint xi. The probability P (xi|Cj) is esti-
mated by treating each feature in xi as an independent draw from a class-specific multinomial. In
the noun-phrase classification task, the features could be surrounding text patterns, the number of
outcomes of the multinomial being the vocabulary size.

Another possible variant is the seeded spherical K-Means algorithm proposed by Basu and Mooney
[2], also a kind of semi-supervised EM algorithm. Third possible variant is seeded von Mises-Fisher
proposed by Banerjee et al. [1], a generative mixture model approach to clustering datapoints based
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on von Mises-Fisher distribution, defined for data distributed on the unit hypersphere (L2 norm
equals 1). We have experimented with all three document representations and showed improvements
of exploratory learning over the usual semi-supervised baseline [11]. Note that our algorithm can be
used with any other document representation that fits the generative EM framework.
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3 Conclusions and Future Work

To summarize, we have found that exploratory learning helps reduce semantic drift on known seeded
classes as well as provides a single method that solves a continuum of tasks from supervised learning
to clustering. In both flat and hierarchical classification/clustering settings, we observed that running
an algorithm in exploratory setting gave comparable or better seed class F1 score when compared
to the traditional semi-supervised counterpart [11, 10, 8]. Further, exploratory learning is more
powerful in conjunction with multiple data views and class hierarchy which can be imposed as soft
constraints on the label vectors assigned to a datapoint. We also found that considering ontological
constraints while inferring labels improves overall performance compared to flat classification for
the the entity classification and gloss finding tasks [10, 12, 8]. Code for the flat exploratory K-
Means algorithm and some datasets we created during this research can be downloaded from http:
//www.cs.cmu.edu/˜bbd/exploratory_learning/.

Apart from reducing the semantic drift of seeded classes, another important advantage of the ex-
ploratory learning method is to discover multiple clusters of datapoints that did not fit any of the
classes given to the algorithm. These are potentially new concepts that can be added to an existing
knowledge base. E.g. , in our experiments with WebSets table corpus and NELL KB, we found
that with some manual inspection, exploratory learning can add good quality concepts like “music
notes”, “dental procedures” etc., that were missing in the NELL KB.

Our exploratory learning framework is not tied to any particular document representation, choice of
features or task. Hence one obvious future research direction lies in applying this idea to tasks other
than concept extraction. E.g. Relation extraction is a very challenging task, and many ontologies like
NELL that are rich in terms of coverage of concepts, have very sparse coverage in terms of relations
between entities. Another relevant task is the context based mention disambiguation using WordNet
as an ontology of synsets. We hope that the Exploratory learning technique can be extended for
relation extraction and word sense disambiguation tasks as well.
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