Faster (and Better) Entity Linking with Cascades

Adrian Benton, Jay DeYoung, Adam Teichert, Stephen Mayhew
Mark Dredze, Benjamin Van Durme, Max Thomas
Human Language Technology Center of Excellence
Baltimore, MD, USA
{adrian, jay.deyoung, ateichert, mdredze, vandurme}@jhu.edu,
mayhew2@illinois.edu, max.thomas@jhuapl.edu

Abstract

Entity linking requires ranking thousands of candidates for each query, a time
consuming process and a challenge for large scale linking. Many systems rely on
prediction cascades to efficiently rank candidates. However, the design of these
cascades often requires manual decisions about pruning and feature use, limiting
the effectiveness of cascades. We present Slinky, a modular, flexible, fast and
accurate entity linker based on prediction cascades. We adapt the web-ranking
prediction cascade learning algorithm, Cronus, in order to learn cascades that are
both accurate and fast. We show that by balancing between accurate and fast
linking, this algorithm can produce Slinky configurations that are significantly
faster and more accurate than a baseline configuration and an alternate cascade
learning method with a fixed introduction of features.

1 Introduction

A key step in mining structured knowledge from unstructured text is to uniquely identify the entities
associated with extracted relations, events and facts by linking them to a structured knowledge base
(KB) [2, 10, 3, 17, 9, 4]. For KBs with many thousands or millions of KB entries, considering them
all is prohibitively expensive. Instead, systems rely on a two stage approach [3, 12, 5], in which a
fast method (often constant time) identifies candidates from the KB for a given mention string, and
a second slower stage relies on extensive features to rank candidates. Some entity linking systems
have extended the two stage approach using prediction cascades [15], such as CALE [11, 12]. There
remain several open challenges for how to develop prediction cascades for this task as pruning
thresholds, features to be extracted, and number of stages are all parameters that are manually tuned.

We address these challenges by introducing Slinky, an entity linking system developed on a mas-
sively parallel distributed processing architecture, allowing cascades with an arbitrary number of
stages, processing numerous candidates and queries in parallel. We adapt Cronus [13], a recent
cascade learning algorithm designed for web ranking, to entity linking. This algorithm can learn
the structure of prediction cascades, deciding which feature templates (groups of features that share
processing in common) to include in which stage and how much each stage should prune candi-
dates. The learning algorithm makes these decisions by optimizing a global objective function that
balances overall accuracy with speed, enabling tuning to balance these two goals by a single scalar
hyperparameter. The algorithm can expand or contract how many candidates are processed in each
stage, much like a slinky. We evaluate both speed and accuracy and find that the learned cascade is
both fast and accurate, improving in both over a baseline ranking SVM objective, as well as a fixed
introduction of features per stage [14].

Entity Linking An entity linking instance is comprised of a mention string ¢, a document d and,
for training, a reference candidate c from the KB. If the mention’s referent is not in the KB, then the
candidate c is represented as NIL. We treat NIL like an ordinary candidate in our system [3, 12].

For each query, the system produces a ranking over a subset of the candidates contained in the KB,
returning the highest ranked candidate as the answer to the query.

2 Slinky

Slinky implements prediction cascades for entity linking on top of a highly parallel message passing
infrastructure to enable the easy addition of new stages and replication of each stage to scale up to
available compute resources.

Slinky’s architecture relies on a pipeline to process each query. Learned stages are ifalicized. 1)
The Query Preprocessor extracts features for each query (mention, document pair) based solely
on the query, which saves repeat processing across candidates. 2) The Triager efficiently generates
candidates for the query from the KB. We use the triage strategy from CALE [12]. We find the
triager is highly effective with a recall of 96.3% for our training queries with a median of 191
candidates per query. 3) Pruners independently score a candidate and filter candidates assigned a
negative score. The key difference between a pruner and the triager, is that the pruner can use a
large, more expensive set of features while the triager only looks at the mention string and candidate
name. Pruners are implemented as binary linear classifiers and we use multiple pruners in a pipeline.
4) The Ranker orders remaining candidates, including the NIL candidate. While the ranker is also a
linear classifier, it jointly considers all remaining candidates, allowing for more expressive features.

Slinky implements this cascade using Akka', a Scala framework for distributed, concurrent message
passing based on the actor model. Each of the above stages is an Actor, which each run on a separate
thread. For slower stages (triager and pruners), we instantiate multiple copies of each Actor, which
allows us to take advantage of a multi-core machine, and process candidates in parallel within each
stage.

We select features commonly used by other entity linking systems. These features are grouped
into templates, such that features within a template share processing in common. The templates
used in our experiments were grouped into Bleu, Dice, Name Match, Multi-Name Match, (features
computing name similarity between mention string and candidate name), Popularity (popularity of
entities in the knowledge base [12]), Context (computing similarity between the query and candidate
documents), Nil (features that indicate query is not in the knowledge base, such as the number of
tokens or characters in the query name), and Bias (simple features noting candidate and query named
entity type and an always-on bias feature). We find that these features with our baseline method gives
competitive results with the best methods. See [12] for a full description of the features.

3 Learning Cascade Structure

We adapt Cronus [13] to learn the parameters for each pruner/ranker, the filtering threshold for each
pruner, and which features each pruner should learn. The Cronus adaptation objective explicitly
trades off between accuracy, speed, and regularization terms:

L(0) = (1= N)La(0) + ALs(0) +C |62 (1)

L 4 is the loss due to inaccurate predictions (i.e. 1 - accuracy). Lg is the loss due to prediction speed,
where we desire faster predictions (smaller loss.) We also include an Lo penalty on the parameters,
6. X\ € [0, 1] trades off between accuracy (smaller A) and speed (higher \) and C'is the regularization
parameter — a linear interpolation of Lo-regularized accuracy and runtime. 6 includes the parameters
for all stages and, in this paper, all stages use linear classifiers. This is where our implementation
diverges most from Cronus [13], since they assume each classifier to be a linear combination of
decision trees. In this sense, our model is more constrained than Cronus. Our goal is to minimize
the total loss £, and we adopt a similar relaxation in order to minimize this function through gradient
descent.

Accuracy The relaxation of accuracy (for a single query) is dependent on two quantities:

"http://akka.io/

_ 1 koo = [e (3)
cs = 2 c,s DPe,s
e e A R S

where c ranges over all candidates for generated by triage for the query, s ranges over all pruners
and ranker stage, 0, are the sets of weights for the linear classifier at stage s, and f is the feature
template extractor for a given stage where if s’ < s then f5 extracts a superset of features of fg .
p is interpreted as the probability that ¢ passes through stage s without pruning using the logistic
function as a relaxation of deterministic pruning with a threshold of 0, and k is the probability that a
candidate remains unpruned by stage s (the probability of “keeping” this candidate till stage s). With
k, we can define P(C, = 0) = [],.(1 — kc,r), the probability that all candidates are independently
pruned by the ranking stage — the final set of candidates to be ranked is empty. In this case, Slinky
defaults to predicting the NIL candidate. If we relax the final ranker as making softmax predictions
over all candidates reaching that stage, we can define the loss to accuracy for a single query, g, as:

k, rexp{y
ES’L‘:P(CT:Q))~]l(y;£NIL)+(17P(Cr:@))(1—%{3’}))
where 7 is the ranker stage, y is the identity of the correct candidate to link to, v, is the score
assigned to candidate y by the ranker, and Z =) _ k. rexp{t).} is the normalizer. exp{t,} can be
interpreted as the unnormalized probability that the final ranker ranks the correct candidate as the

top prediction. Under this interpretation, kyreep{vu} ig the probability that the correct candidate
passed through the cascade unpruned and was then ranked as the top prediction (these events are

. ; a
independent.) For a set of queries, Q, L4 = %

Speed We define the proportion loss in runtime compared to the worst case runtime of extracting all
feature templates for all candidates as

Ls =00/ &)
where Jy is the cost of feature extraction using our current set of weights, and J;, is the cost of feature
extraction if all parameters of 6 were set to 1 (every stage requires all candidates to be extracted).
We assume that if all weights for a feature template in a stage are zeroed, then Slinky will not
extract these features. The trick is to define dg such that traversing the gradient will yield sparsity in
feature templates used across earlier stages, so that by the end of the cascade, only a small number
of unpruned candidates will have many feature templates extracted for them; most candidates are
pruned early by stages only requiring inexpensive features to be extracted. Since selecting which
feature templates to extract in each stage is effectively L, regularization, and would have to be
solved with combinatorial optimization [6], we use a variant of the hierarchical group lasso penalty
on the weights within a feature template and across prefixes of stages to achieve the proper sparsity
pattern with gradient descent optimization:

= — Pe.s) (6)
si) (7
¢ e z e
59:Z<kcrd +chs s> 3
s<r

where w, s is the probability that candidate ¢ reaches stage s and is then pruned (follows directly
from the above definitions of k and p) and d; is the hierarchical group lasso relaxation of feature
template acquisition cost for a candidate that passes through the pipeline to stage s. In this for-
mulation, each group is considered to be all the features in a feature template for all classifiers up
till stage s. The group lasso penalty is the L1 penalty of the L2 norms for each group. In Eq. 7,
Ts represents the acquisition cost for feature template f, |ns| is the number of features in f, and
0, ; ranges over weights associated with this feature template over all previous stages. Note that
defining the group lasso with normalization by |ns|s is consistent with the formulation in [16]. We
employ this normalization so as not to harshly penalize feature templates with many features. This
formulation of the group lasso is equivalent to that presented in [13], aside from the fact that their
groups also spanned decision trees within each stage.

Parameter Estimation We minimize Eq. 1 using the approximations for accuracy (Eq. 4) and
speed (Eq. 5) as well as L. Since multiple stages makes the loss non-convex, making parameter

initialization critical, we initialized each pruner’s parameters using piece-wise training with a rank
SVM objective [8], with the slack parameter set to %, the inverse of the regularization constant
in Eq. 1. This initialization is similar to Cronus since they use a convex initialization method by
training each successive stage, holding previous stage weights fixed. We train with L-BFGS and
obtain gradients using automatic differentiation from Theano [1].

4 Experiments

We evaluated Slinky on entity linking shared task datasets to determine improvements obtained
by using a cascade. We compare with the cascade learning method presented in [14], which uses
a similar relaxation to the learning by supposing each pruner probabilistically rejects candidates
based on their score passed through a sigmoid function. However, they assume a fixed introduction
of feature templates per stage, where earlier stages may only make predictions on less expensive
features, and more costly features are successively added to stages. We simulate this Fixed feature
introduction method in our framework by fixing weights and the gradients of those weights to zero
for those stages that do not have access to the feature templates yet. Performance is reported in terms
of macro-averaged accuracy.

Our training, development, and test data came from previous Text Analysis Conference Knowledge
Base Population (TAC-KBP) entity linking tasks using the TAC-KBP knowledge base containing
818,741 entries. For training, we used the 1615 query training data available for TAC 2009, includ-
ing supplemental data released by [3], for development the 3904 query evaluation data from TAC
2009, and for test the 2250 query evaluation data from TAC 2010.

Actual runtimes reported are median number of milliseconds per query over 10 runs of a Slinky
configuration with 4 actors allotted per stage, operating in parallel. Each experiment used a machine
with 64 2.1 GHz AMD Opteron 6272 CPUs and a total of 256G RAM. We start the wall-clock
timer once all queries have been read by the system and sent to the preprocessor stage. We stop the
timer once all queries have been resolved and all predictions are written to disk. We also include the
time to write to disk since we intend the reported runtime to represent the time necessary to resolve
queries in a real setting. We tuned A, C, and the number of stages on development data. We selected
two configurations: most accurate and fastest to evaluate on test data. A baseline configuration
consisted of only a single ranker and favored accuracy only (A = 0). The 7 values were estimated
by the number of milliseconds to extract each feature template over all training candidates on average
under Slinky’s framework.

5 Results

Table 1 shows performance (TAC 2009 test data for development, TAC 2010 evaluation data for
test) of three selected configurations based on their performance over the development set: fastest,
accurate, and baseline (n = 0, A = 0). n corresponds to the number of pruners in the cascade
configuration. The reported runtime is the average number of milliseconds to resolve each query.
This evaluation produced a very nice result: the fastest Cronus-learned system over the development
set is in fact also the most accurate over test data, improving actual runtime by around 50% and
giving large gains in accuracy (over 6% absolute). This is surprising since it did not achieve as
high accuracy over the development set as the Cronus Accurate configuration (0.742 as opposed to
0.778.) We believe this is due to variation between the development and test sets, but also that the
sparsity introduced by A, the penalty on runtime, may allow this configuration to generalize better
than a denser cascade.

Although the method presented in [14] is even faster, this speed comes with a high cost to accuracy.
Compared to the systems submitted to the TAC KBP 2010 shared task, our baseline system would
rank just behind the 10th best system (Figure 3 in [7].) However, a critical difference, aside from
feature changes described above, is that systems in TAC KBP 2010 were able to train over all 3904
queries in the TAC KBP 2009 evaluation set. Since we used that set for development, we trained on
only 1615 queries, which were not necessarily representative of the true distribution.

It is clear that learning obtains significant reductions in speed over a baseline, but Slinky’s archi-
tecture in general is already a significant improvement over previous methods. While runtime has

Table 1: Test performance of selected configurations using the Cronus-learned and Fixed Slinky
configurations along with a single-stage baseline that performed fastest/most accurately on the de-
velopment set.

ni| A C Test Accuracy | Lg | Test Runtime | Configuration
0 | 0.00 | 0.500 0.689 1.0 313 Baseline

1| 0.15 | 0.005 0.752 0.26 161 Cronus Fastest
31025 0.050 0.726 0.86 290 Cronus Accurate
3 | NA | 5.000 0.547 0.03 121 Fixed Fastest

3 | NA | 0.250 0.689 0.37 185 Fixed Accurate

not been a focus of most entity linking systems, [3], one of the first entity linking systems, provide
some information on runtime. They report a “fast candidate selection system” that resolved queries
in 1,980 milliseconds on average. Our baseline is roughly 6.3 times faster than their system, and our
learned “fastest” configuration is about 12.3 times faster.

In summary, Slinky is a highly parallel architecture for entity linking. We learn the configuration
of the cascade optimized for both fast and accurate entity linking. The learned cascade produces a
reduction in runtime of 50% over an already fast baseline, as well as substantial improvements in
accuracy.

References

[1] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU
and GPU math expression compiler. In Python for Scientific Computing Conference (SciPy),
2010.

[2] Silviu Cucerzan. Large-scale named entity disambiguation based on wikipedia data. In
EMNLP, 2007.

[3] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin. Entity disambiguation
for knowledge base population. In COLING, 2010.

[4] Stephen Guo, Ming-Wei Chang, and Emre Kiciman. To link or not to link? a study on end-to-
end tweet entity linking. In NAACL, 2013.

[5] Yuhang Guo, Bing Qin, Yuqin Li, Ting Liu, and Sheng Li. Improving candidate generation
for entity linking. In Natural Language Processing and Information Systems, pages 225-236.
Springer, 2013.

[6] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. JMLR,
3, 2003.

[7] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. Overview of the TAC
2010 knowledge base population track. In TAC, 2010.

[8] Thorsten Joachims. Training linear svms in linear time. In KDD, 2006.

[9] Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou, Furu Wei, and Yi Lu. Entity linking for
tweets. In ACL, 2013.

[10] Paul McNamee and Hoa Trang Dang. Overview of the TAC 2009 knowledge base population
track. In TAC, 2009.

[11] Paul McNamee, James Mayfield, Douglas W. Oard, Tan Xu, Ke Wu, Veselin Stoyanov, and
David Doerman. Cross-language entity linking in maryland during a hurricane. In TAC, 2011.

[12] Paul McNamee, Veselin Stoyanov, James Mayfield, Tim Finin, Tim Oates, Tan Xu, Douglas
Oard, and Dawn Lawrie. HLTCOE participation at TAC 2012: Entity linking and cold start
knowledge base construction. In TAC, 2012.

[13] Minmin Minmin Chen, Kilian Q. Weinberger, Olivier Chapelle, Dor Kedem, and Zhixiang Xu.
Classifier cascade for minimizing feature evaluation cost. In Neil D. Lawrence and Mark A.
Girolami, editors, Proceedings of the Fifteenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS-12), volume 22, pages 218-226, 2012.

[14] Vikas C. Raykar, Balaji Krishnapuram, and Shipeng Yu. Designing efficient cascaded classi-
fiers: Tradeoff between accuracy and cost. In Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 853—860, New
York, NY, USA, 2010. ACM.

[15] David Weiss and Ben Taskar. Structured prediction cascades. In AlStats, 2010.

[16] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2006.

[17] Zhicheng Zheng, Xiance Si, Fangtao Li, Edward Y. Chang, and Xiaoyan Zhu. Entity disam-
biguation with freebase. In Web Intelligence and Intelligent Agent Technology, 2012.

