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Multi-relational data

Data is structured as a graph

Each node = an entity

Each edge = a relation/fact

A relation = (sub, rel , obj):

sub =subject,
rel = relation type,
obj = object.

Nodes w/o features.

We want to also link this to text!!

2 / 24



Embeddings for multi-relational data Pros and cons of embedding models

Embedding Models

KBs are hard to manipulate

Large dimensions: 105/108 entities, 104/106 rel. types

Sparse: few valid links

Noisy/incomplete: missing/wrong relations/entities

Two main components:

1 Learn low-dimensional vectors for words and KB entities and
relations.

2 Stochastic gradient based training, directly trained to define a
similarity criterion of interest.
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Link Prediction

Add new facts without requiring extra knowledge

From known information, assess the
validity of an unknown fact

Goal: We want to model, from data,

P[relk(subi , objj) = 1]

→ collective classification
→ towards reasoning in embedding
spaces
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Previous Work

Tensor factorization (Harshman et al., ’94)

Probabilistic Relational Learning (Friedman et al., ’99)

Relational Markov Networks (Taskar et al., ’02)

Markov-logic Networks (Kok et al., ’07)

Extension of SBMs (Kemp et al., ’06) (Sutskever et al., ’10)

Spectral clustering (undirected graphs) (Dong et al., ’12)

Ranking of random walks (Lao et al., ’11)

Collective matrix factorization (Nickel et al., ’11)

Embedding models (Bordes et al., ’11, ’13) (Jenatton et al., ’12)

(Socher et al., ’13) (Wang et al., ’14) (Garćıa-Durán et al., ’14)
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Modeling Relations as Translations (Bordes et al. ’13)

Intuition: we want s + r ≈ o.

The similarity measure is defined as:

d(h, r , t) = −||h + r − t||22

We learn s,r and o that verify that.
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Modeling Relations as Translations (Bordes et al. ’13)

Intuition: we want s + r ≈ o.

The similarity measure is defined as:

d(sub, rel , obj) = ||s + r − o||22

s,r and o are learned to verify that.
We use a ranking loss whereby true triples are

higher ranked.
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Motivations of a Translation-based Model

Natural representation for hierarchical relationships.

Word2vec word embeddings (Mikolov et al., ’13):
there may exist embedding spaces in which relationships among

concepts are represented by translations.
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Chunks of Freebase

Data statistics:
Entities (ne) Rel. (nr ) Train. Ex. Valid. Ex. Test Ex.

FB13 75,043 13 316,232 5,908 23,733
FB15k 14,951 1,345 483,142 50,000 59,071
FB1M 1×106 23,382 17.5×106 50,000 177,404

Training times for TransE:

Embedding dimension: 50.
Training time:

on Freebase15k: ≈2h (on 1 core),
on Freebase1M: ≈1d (on 16 cores).
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Example

”Who influenced J.K. Rowling?”

J. K. Rowling influenced by G. K. Chesterton
J. R. R. Tolkien
C. S. Lewis
Lloyd Alexander
Terry Pratchett
Roald Dahl
Jorge Luis Borges
Stephen King
Ian Fleming

Green=Train Blue=Test Black=Unknown
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Example

”Which genre is the movie WALL-E?”

WALL-E has genre Animation
Computer animation
Comedy film
Adventure film
Science Fiction
Fantasy
Stop motion
Satire
Drama
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Benchmarking

Ranking on FB15k Classification on FB13

On FB1M,TransE predicts 34% in the Top-10 (SE only 17.5%).
Results extracted from (Bordes et al., ’13) and (Wang et al., ’14)
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Refining TransE

TATEC (Garćıa-Durán et al., ’14) supplements TransE with a
trigram term for encoding complex relationships:

d(sub, rel , obj) =

trigram︷ ︸︸ ︷
s>1 Ro1 +

bigrams≈TransE︷ ︸︸ ︷
s>2 r + o>2 r

′ + s>2 Do2,

with s1 6= s2 and o1 6= o2.

TransH (Wang et al., ’14) adds an orthogonal projection to the
translation of TransE:

d(sub, rel , obj) = ||(s−r>p srp) + rt − (o−r>p orp)||22,

with rp ⊥ rt .
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Benchmarking

Ranking on FB15k

Results extracted from (Garćıa-Durán et al., ’14) and (Wang et al., ’14)
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Relation Extraction

Goal: Given a bunch of sentences concerning the same entity pair,
identify relations (if any) between them to add to the KB.
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Embeddings of Text and Freebase (Weston et al., ’13)

Basic Method: an embedding-based classifier is trained to
predict the relation type, given text mentions M and (sub, obj):

r(m, sub, obj) = arg max
rel ′

∑
m∈M

Sm2r (m, rel ′)

Classifier based on WSABIE (Weston et al., ’11).

16 / 24



Embeddings for multi-relational data Pros and cons of embedding models

Embeddings of Text and Freebase (Weston et al., ’13)

Idea: improve extraction by using both text + available
knowledge (= current KB).

A model of the KB used to help extracted relations agree with it:

r ′(m, sub, obj) = arg max
rel ′

( ∑
m∈M

Sm2r (m, rel ′)−dKB(sub, rel ′, obj)
)

aaa

with dKB(sub, rel ′, obj) = ||s + r′ − o||22
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Benchmarking on NYT+Freebase
Exp. on NY Times papers linked with Freebase (Riedel et al., ’10)
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Precision/recall curve for predicting relations

A new embedding method, Wang et al., EMNLP’14, now beats these.
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Open-domain Question Answering

Open-domain Q&A: answer question on any topic

−→ query a KB with natural language

Examples

“What is cher’s son’s name ?” elijah blue allman

“What are dollars called in spain ?” peseta

“What is henry clay known for ?” lawyer

“Who did georges clooney marry in 1987 ?” kelly preston

Recent effort with semantic parsing (Kwiatkowski et al. ’13)

(Berant et al. ’13, ’14) (Fader et al., ’13, ’14) (Reddy et al., ’14)

Models with embeddings as well (Bordes et al., ’14)
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Subgraph Embeddings (Bordes et al., ’14)

Model learns embeddings of questions and (candidate) answers
Answers are represented by entity and its neighboring subgraph

“Who did Clooney marry in 1987?” 
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Training data

Freebase is automatically converted into Q&A pairs

Closer to expected language structure than triples

Examples of Freebase data

(sikkim, location.in state.judicial capital, gangtok)
what is the judicial capital of the in state sikkim ? – gangtok

(brighouse, location.location.people born here, edward barber)
who is born in the location brighouse ? – edward barber

(sepsis, medicine.disease.symptoms, skin discoloration)
what are the symptoms of the disease sepsis ? – skin discoloration
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Training data
All Freebase questions have rigid and similar structures

Supplemented by pairs from clusters of paraphrase questions

Multitask training: similar questions ↔ similar embeddings

Examples of paraphrase clusters

what are two reason to get a 404 ?
what is error 404 ?
how do you correct error 404 ?

what is the term for a teacher of islamic law ?
what is the name of the religious book islam use ?
who is chief of islamic religious authority ?

what country is bueno aire in ?
what countrie is buenos aires in ?
what country is bueno are in ?
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Benchmarking on WebQuestions
Experiments on WebQuestions (Berant et al., ’13)

F1-score for answering test questions

New result: Wang et al. reports 45.3 on same data.
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Conclusion

Embeddings are efficient features for many tasks in practice

Training with SGD scales & parallelizable (Niu et al., ’11)

Flexible to various tasks: multi-task learning of embeddings

Supervised or unsupervised training

Allow to use extra-knowledge in other applications

Current limitations

Compression: improve the memory capacity of embeddings and
allow for one-shot learning of new symbols

Beyond linear: most supervised labeling problems are well
tackled by simple linear models. Non-linearity should help more.
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