Embeddings for KB and text representation, extraction and question answering.

<u>Jason Weston</u>[†] & Antoine Bordes & Sumit Chopra Facebook AI Research

External Collaborators: Alberto Garcia-Duran & Nicolas Usunier & Oksana Yakhnenko

[†] Some of this work was done while J. Weston worked at Google.

Multi-relational data

- Data is structured as a graph
- Each node = an entity
- Each edge = a relation/fact
- A relation = (*sub*, *rel*, *obj*):
 - sub =subject,
 - rel = relation type,
 - obj = object.
- Nodes w/o features.

We want to also link this to text!!

Embedding Models

- KBs are hard to manipulate
 - Large dimensions: $10^5/10^8$ entities, $10^4/10^6$ rel. types
 - Sparse: few valid links
 - Noisy/incomplete: missing/wrong relations/entities

Two main components:

- Learn low-dimensional vectors for words and KB entities and relations.
- Stochastic gradient based training, *directly trained to define a similarity criterion of interest.*

Link Prediction

Add new facts without requiring extra knowledge

From known information, assess the validity of an unknown fact **Goal:** We want to model, from data, $\mathbb{P}[rel_k(sub_i, obj_j) = 1]$

Previous Work

- Tensor factorization (Harshman et al., '94)
- Probabilistic Relational Learning (Friedman et al., '99)
- Relational Markov Networks (Taskar et al., '02)
- Markov-logic Networks (Kok et al., '07)
- Extension of SBMs (Kemp et al., '06) (Sutskever et al., '10)
- Spectral clustering (undirected graphs) (Dong et al., '12)
- Ranking of random walks (Lao et al., '11)
- Collective matrix factorization (Nickel et al., '11)
- Embedding models (Bordes et al., '11, '13) (Jenatton et al., '12) (Socher et al., '13) (Wang et al., '14) (García-Durán et al., '14)

Modeling Relations as Translations (Bordes et al. '13)

Intuition: we want $\mathbf{s} + \mathbf{r} \approx \mathbf{o}$.

Modeling Relations as Translations (Bordes et al. '13)

Intuition: we want $\mathbf{s} + \mathbf{r} \approx \mathbf{o}$. born_in Mom The similarity measure is defined as: Austin $d(sub, rel, obj) = ||\mathbf{s} + \mathbf{r} - \mathbf{o}||_2^2$ Miami **s**,**r** and **o** are learned to verify that. We use a ranking loss whereby true triples are Iohr higher ranked.

Motivations of a Translation-based Model

• Natural representation for hierarchical relationships.

• Word2vec word embeddings (Mikolov et al., '13): there may exist embedding spaces in which relationships among concepts are represented by translations.

Chunks of Freebase

• Data statistics:

	Entities (n_e)	Rel. (n_r)	Train. Ex.	Valid. Ex.	Test Ex.
FB13	75,043	13	316,232	5,908	23,733
FB15k	14,951	1,345	483,142	50,000	59,071
FB1M	1×10 ⁶	23,382	17.5×10^{6}	50,000	177,404

• Training times for TransE:

- Embedding dimension: 50.
- Training time:
 - on Freebase15k: \approx 2h (on 1 core),
 - on Freebase1M: \approx 1d (on 16 cores).

Example

"Who influenced J.K. Rowling?"

J. K. Rowling _influenced_by G. K. Chesterton

G. K. Chesterton J. R. R. Tolkien C. S. Lewis Lloyd Alexander Terry Pratchett Roald Dahl Jorge Luis Borges Stephen King Ian Fleming

Green=Train Blue=Test Black=Unknown

Example

"Which genre is the movie WALL-E?"

WALL-E

_has_genre

Animation Computer animation Comedy film Adventure film Science Fiction Fantasy Stop motion Satire Drama

Benchmarking

On FB1M,TransE predicts 34% in the Top-10 (SE only 17.5%). Results extracted from (Bordes et al., '13) and (Wang et al., '14)

Refining TransE

• TATEC (García-Durán et al., '14) supplements TransE with a trigram term for encoding complex relationships:

$$d(sub, rel, obj) = \overbrace{\mathbf{s}_1^\top \mathbf{Ro}_1}^{\text{trigram}} + \overbrace{\mathbf{s}_2^\top \mathbf{r} + \mathbf{o}_2^\top \mathbf{r}' + \mathbf{s}_2^\top \mathbf{Do}_2}^{\text{bigrams} \approx \text{TransE}},$$

with
$$\mathbf{s}_1 \neq \mathbf{s}_2$$
 and $\mathbf{o}_1 \neq \mathbf{o}_2$.

• TransH (Wang et al., '14) adds an orthogonal projection to the translation of TransE:

$$d(sub, rel, obj) = ||(\mathbf{s} - \mathbf{r}_p^\top \mathbf{s} \mathbf{r}_p) + \mathbf{r}_t - (\mathbf{o} - \mathbf{r}_p^\top \mathbf{o} \mathbf{r}_p)||_2^2$$

with $\mathbf{r}_p \perp \mathbf{r}_t$.

Benchmarking

58.5 60 52.6 47.1 50 44.1 39.8 40 Hits@10(%) 27 30 20 10 0 RESCAL SE NTN TransE TATEC TransH

Ranking on FB15k

Results extracted from (García-Durán et al., '14) and (Wang et al., '14)

Relation Extraction

Goal: Given a bunch of sentences concerning the same entity pair, identify relations (if any) between them to add to the KB.

Embeddings of Text and Freebase (Weston et al., '13)

• **Basic Method:** an embedding-based classifier is trained to predict the relation type, given text mentions \mathcal{M} and (*sub*, *obj*):

$$\mathsf{r}(m, \mathsf{sub}, \mathsf{obj}) = rg\max_{\mathsf{rel}'} \sum_{m \in \mathcal{M}} S_{m2\mathsf{r}}(m, \mathsf{rel}')$$

Embeddings of Text and Freebase (Weston et al., '13)

- Idea: improve extraction by using both text + available knowledge (= current KB).
- A model of the KB used to help extracted relations agree with it:

$$r'(m, sub, obj) = \arg \max_{rel'} ig(\sum_{m \in \mathcal{M}} S_{m2r}(m, rel') - d_{KB}(sub, rel', obj) ig)$$

with $d_{KB}(sub, rel', obj) = ||\mathbf{s} + \mathbf{r}' - \mathbf{o}||_2^2$

Benchmarking on NYT+Freebase

Exp. on NY Times papers linked with Freebase (Riedel et al., '10)

Precision/recall curve for predicting relations

A new embedding method, Wang et al., EMNLP'14, now beats these.

Open-domain Question Answering

• **Open-domain Q&A**: answer question on any topic

 \rightarrow query a KB with natural language

Examples				
"What is cher's son's name ?"	elijah_blue_allman			
"What are dollars called in spain ?"	peseta			
"What is henry_clay known for ?"	lawyer			
"Who did georges_clooney marry in 1987 ?"	kelly_preston			

- Recent effort with semantic parsing (Kwiatkowski et al. '13) (Berant et al. '13, '14) (Fader et al., '13, '14) (Reddy et al., '14)
- Models with embeddings as well (Bordes et al., '14)

Subgraph Embeddings (Bordes et al., '14)

- Model learns embeddings of questions and (candidate) answers
- Answers are represented by entity and its neighboring subgraph

Training data

- Freebase is automatically converted into Q&A pairs
- Closer to expected language structure than triples

Examples of Freebase data

(sikkim, location.in_state.judicial_capital, gangtok) what is the judicial capital of the in state sikkim? - gangtok

(brighouse, location.location.people_born_here, edward_barber) who is born in the location brighouse ? - edward_barber

(sepsis, medicine.disease.symptoms, skin_discoloration) what are the symptoms of the disease sepsis ? - skin_discoloration

Training data

- All Freebase questions have rigid and similar structures
- Supplemented by pairs from clusters of paraphrase questions
- Multitask training: similar questions \leftrightarrow similar embeddings

Examples of paraphrase clusters

```
what are two reason to get a 404 ?
what is error 404 ?
how do you correct error 404 ?
```

what is the term for a teacher of islamic law ? what is the name of the religious book islam use ? who is chief of islamic religious authority ?

what country is bueno aire in ? what countrie is buenos aires in ? what country is bueno are in ?

Benchmarking on WebQuestions

Experiments on WebQuestions (Berant et al., '13)

F1-score for answering test questions

New result: Wang et al. reports 45.3 on same data.

Conclusion

- Embeddings are efficient features for many tasks in practice
- Training with SGD scales & parallelizable (Niu et al., '11)
- Flexible to various tasks: multi-task learning of embeddings
- Supervised or unsupervised training
- Allow to use extra-knowledge in other applications

Current limitations

- Compression: improve the memory capacity of embeddings and allow for one-shot learning of new symbols
- Beyond linear: most supervised labeling problems are well tackled by simple linear models. Non-linearity should help more.