Embeddings for KB and text representation, extraction and question answering.

Jason Weston† & Antoine Bordes & Sumit Chopra
Facebook AI Research

External Collaborators:
Alberto Garcia-Duran & Nicolas Usunier & Oksana Yakhnenko

† Some of this work was done while J. Weston worked at Google.
Multi-relational data

- Data is structured as a graph
- Each node = an entity
- Each edge = a relation/fact
- A relation = (sub, rel, obj):
 - sub = subject,
 - rel = relation type,
 - obj = object.
- Nodes w/o features.

We want to also link this to text!!
Embedding Models

KBs are hard to manipulate

- **Large dimensions**: $10^5/10^8$ entities, $10^4/10^6$ rel. types
- **Sparse**: few valid links
- **Noisy/incomplete**: missing/wrong relations/entities

Two main components:

1. Learn low-dimensional vectors for **words** and KB **entities** and **relations**.

2. **Stochastic gradient** based training, *directly trained to define a similarity criterion of interest.*
Link Prediction

Add new facts *without requiring extra knowledge*

From known information, *assess the validity of an unknown fact*

Goal: *We want to model, from data,*

\[\mathbb{P}[rel_k(sub_i, obj_j) = 1] \]
Previous Work

- **Tensor factorization** (Harshman et al., ’94)
- **Probabilistic Relational Learning** (Friedman et al., ’99)
- **Relational Markov Networks** (Taskar et al., ’02)
- **Markov-logic Networks** (Kok et al., ’07)
- **Extension of SBMs** (Kemp et al., ’06) (Sutskever et al., ’10)
- **Spectral clustering (undirected graphs)** (Dong et al., ’12)
- **Ranking of random walks** (Lao et al., ’11)
- **Collective matrix factorization** (Nickel et al., ’11)
- **Embedding models** (Bordes et al., ’11, ’13) (Jenatton et al., ’12) (Socher et al., ’13) (Wang et al., ’14) (García-Durán et al., ’14)
Modeling Relations as Translations (Bordes et al. ’13)

Intuition: we want $s + r \approx o$.

Diagram illustrating the relationships between Miami, Mom, Jane, John, Patti, and Austin.
Modeling Relations as Translations (Bordes et al. ’13)

Intuition: we want $s + r \approx o$.

The similarity measure is defined as:

$$d(sub, rel, obj) = ||s + r - o||_2^2$$

s, r and o are learned to verify that.

We use a ranking loss whereby true triples are higher ranked.
Motivations of a Translation-based Model

- Natural representation for hierarchical relationships.

- Word2vec word embeddings (Mikolov et al., ’13): there may exist embedding spaces in which relationships among concepts are represented by translations.
Chunks of Freebase

Data statistics:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FB13</td>
<td>75,043</td>
<td>13</td>
<td>316,232</td>
<td>5,908</td>
<td>23,733</td>
</tr>
<tr>
<td>FB15k</td>
<td>14,951</td>
<td>1,345</td>
<td>483,142</td>
<td>50,000</td>
<td>59,071</td>
</tr>
<tr>
<td>FB1M</td>
<td>1×10^6</td>
<td>23,382</td>
<td>17.5×10^6</td>
<td>50,000</td>
<td>177,404</td>
</tr>
</tbody>
</table>

Training times for TransE:

- Embedding dimension: 50.
- Training time:
 - on Freebase15k: \approx2h (on 1 core),
 - on Freebase1M: \approx1d (on 16 cores).
Example

"Who influenced J.K. Rowling?"

J. K. Rowling _influenced_by_ G. K. Chesterton
J. R. R. Tolkien
C. S. Lewis
Lloyd Alexander
Terry Pratchett
Roald Dahl
Jorge Luis Borges
Stephen King
Ian Fleming

Green=Train Blue=Test Black=Unknown
Example

”Which genre is the movie WALL-E?”

WALL-E has genre Animation
Computer animation
Comedy film
Adventure film
Science Fiction
Fantasy
Stop motion
Satire
Drama
On **FB1M**, TransE predicts **34% in the Top-10** (SE only 17.5%). Results extracted from (Bordes et al., '13) and (Wang et al., '14)
Refining TransE

- **TATEC** (García-Durán et al., '14) supplements TransE with a **trigram term** for encoding complex relationships:

\[
d(sub, rel, obj) = s_1^\top R o_1 + s_2^\top r + o_2^\top r' + s_2^\top D o_2,
\]

with \(s_1 \neq s_2 \) and \(o_1 \neq o_2 \).

- **TransH** (Wang et al., '14) adds an **orthogonal projection** to the translation of TransE:

\[
d(sub, rel, obj) = \| (s - r_p^\top s r_p) + r_t - (o - r_p^\top o r_p) \|_2^2,
\]

with \(r_p \perp r_t \).
Benchmarking

Ranking on FB15k

Results extracted from (García-Durán et al., '14) and (Wang et al., '14)
Relation Extraction

Goal: Given a bunch of sentences concerning the same entity pair, identify relations (if any) between them to add to the KB.
Embeddings of Text and Freebase (Weston et al., ’13)

- **Basic Method:** an embedding-based classifier is trained to predict the relation type, given text mentions \mathcal{M} and (sub, obj):

$$r(m, sub, obj) = \arg \max_{rel'} \sum_{m \in \mathcal{M}} S_{m2r}(m, rel')$$

Classifier based on WSABIE (Weston et al., ’11).
Embeddings of Text and Freebase (Weston et al., ’13)

- **Idea:** improve extraction by using both text + available knowledge (= current KB).

- A model of the KB used to help extracted relations agree with it:

\[
r'(m, sub, obj) = \arg \max_{rel'} \left(\sum_{m \in M} S_{m2r}(m, rel') - d_{KB}(sub, rel', obj) \right)
\]

with \(d_{KB}(sub, rel', obj) = \|s + r' - o\|^2_2\)
Benchmarks on NYT+Freebase
Exp. on NY Times papers linked with Freebase (Riedel et al., '10)

Precision/recall curve for predicting relations
A new embedding method, Wang et al., EMNLP’14, now beats these.
Open-domain Question Answering

- **Open-domain Q&A**: answer question on any topic
 - query a KB with natural language

Examples

- “What is cher’s son’s name?”
 - elijah_blue_allman
- “What are dollars called in spain?”
 - peseta
- “What is henry_clay known for?”
 - lawyer
- “Who did georges_clooney marry in 1987?”
 - kelly_preston

- Recent effort with semantic parsing (Kwiatkowski et al. ’13)
 (Berant et al. ’13, ’14) (Fader et al., ’13, ’14) (Reddy et al., ’14)
- Models with embeddings as well (Bordes et al., ’14)
Subgraph Embeddings (Bordes et al., ’14)

- Model learns embeddings of questions and (candidate) answers
- Answers are represented by entity and its neighboring subgraph

![Diagram of Subgraph Embeddings]

- Word embedding lookup table
- Embedding model
- Word embedding lookup table
- Embedding of the question
- Detection of Freebase entity in the question
- Freebase subgraph
- How the candidate answer fits the question
- Dot product
- Score
- Binary encoding of the question
- Binary encoding of the subgraph

Example Question: “Who did Clooney marry in 1987?”

Candidate Answer: K. Preston
Training data

- Freebase is **automatically converted into Q&A pairs**
- Closer to expected **language structure** than triples

Examples of Freebase data

- \((\text{sikkim}, \text{location.in_state.judicial_capital}, \text{gangtok}) \)
 what is the judicial capital of the in state \text{sikkim} \? – \text{gangtok}

- \((\text{brighouse}, \text{location.location.people_born_here}, \text{edward_babar}) \)
 who is born in the location \text{brighouse} \? – \text{edward_babar}

- \((\text{sepsis}, \text{medicine.disease.symptoms}, \text{skin_discoloration}) \)
 what are the symptoms of the disease \text{sepsis} \? – \text{skin_discoloration}
Training data

- All Freebase questions have **rigid and similar structures**
- Supplemented by **pairs from clusters of paraphrase questions**
- **Multitask training:** similar questions ⟷ similar embeddings

Examples of paraphrase clusters

- what are two reason to get a 404 ?
- what is error 404 ?
- how do you correct error 404 ?

- what is the term for a teacher of islamic law ?
- what is the name of the religious book islam use ?
- who is chief of islamic religious authority ?

- what country is bueno aire in ?
- what countrie is buenos aires in ?
- what country is bueno are in ?
Benchmarking on WebQuestions

Experiments on WebQuestions (Berant et al., ’13)

F1-score for answering test questions

New result: Wang et al. reports 45.3 on same data.
Conclusion

- Embeddings are **efficient features** for many tasks in practice
- Training with SGD **scales & parallelizable** (Niu et al., ’11)
- Flexible to various tasks: **multi-task learning of embeddings**
- **Supervised or unsupervised** training
- Allow to use **extra-knowledge in other applications**

Current limitations

- **Compression**: improve the memory capacity of embeddings and allow for one-shot learning of new symbols
- **Beyond linear**: most supervised labeling problems are well tackled by simple linear models. Non-linearity should help more.