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Precision Medicine
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Traditional Biology
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Genomics
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Discovery
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Disease
(e.g., Alzheimer, Cancer)

Genome-Wide Association Studies (GWAS) 

2000

2010

“Genetic diagnosis of diseases would be

accomplished in 10 years and that

treatments would start to roll out perhaps

five years after that.”

“A Decade Later, Genetic Maps Yield Few New Cures” 

New York Times, June 2010.
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Key Challenges

 Human genome: 3 billion base pairs

 Potential variations: > 10 million variants

 Combination: > 101000000 (1 million zeros)

 Machine learning problem

 Atomic features: > 10 million

 Feature combination: Too many to enumerate
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Genomics
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Cancer

 Hundreds of mutations

 Most are “passenger”, not driver

 Can we identify likely drivers?
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Panomics
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Pathway Knowledge

Genes work synergistically in pathways
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Why Hard to Identify Drivers?

Complex diseases  Perturb multiple pathways

16Hanahan & Weinberg [Cell 2011]



Why Cancer Comes Back?

 Subtypes with alternative pathway profile

 Compensatory pathways can be activated
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 Subtypes with alternative pathway profile

 Compensatory pathways can be activated
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Cancer Systems Modeling
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Approach: Graph HMM
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Extract Pathways from PubMed
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PubMed

 24 millions abstracts

 Two new abstracts every minute

 Adds over one million every year
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Long Tail of Variations
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TP53 inhibits BCL2.

Tumor suppressor P53 down-regulates the activity of BCL-2 proteins.

BCL2 transcription is suppressed by P53 expression.

The inhibition of B-cell CLL/Lymphoma 2 expression by TP53 …

……



Bottleneck: Annotated Examples

 GENIA (BioNLP Shared Task 2009-2013)

 1999 abstracts

 MeSH: human, blood cell, transcription factor

 Challenge for “supervised” machine learning

 Can we breach this bottleneck?
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Free Lunch #1: 

Distributional Similarity

 Similar context  Probably similar meaning

 Annotation as latent variables

Textual expression  Recursive clusters

 Unsupervised semantic parsing

34

Poon & Domingos, “Unsupervised Semantic Parsing”. 

EMNLP 2009. Best Paper Award.



Recursive Clustering
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Recursive Clustering
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Recursive Clustering
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Recursive Clustering
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TP53 inhibits BCL2.

Tumor suppressor P53 down-regulates the activity of BCL-2 proteins.

BCL2 transcription is suppressed by P53 expression.

The inhibition of B-cell CLL/Lymphoma 2 expression by TP53 …
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BCL2, BCL-2 proteins,

B-cell CLL/Lymphoma 2

……

TP53,Tumor 

suppressor P53

……

inhibits, down-regulates, 

suppresses, inhibition, …

Theme Cause



Free Lunch #2:

Existing KBs

 Many KBs available

 Gene/Protein: GeneBank, UniProt, …

 Pathways: NCI, Reactome, KEGG, BioCarta, …

 Annotation as latent variables

Textual expression  Table, column, join, …

 Grounded semantic parsing
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Entity Extraction
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Entity Extraction
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Relation Extraction
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Relation Extraction
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Question Answering w.r.t. KB

44

Poon, “Grounded Unsupervised Semantic Parsing”. ACL 2013.

System Accuracy

ZC07 84.6

FUBL 82.8

GUSP 83.5

Supervised

Unsupervised



Pathway Extraction

 Generalize distant supervision: 

Nested events in KB likely occur in 

semantic parse of some sentence

 Prior: Favor semantic parse grounded in KB

 Outperformed the majority of participants in 

original GENIA Event Shared Task

45

Parikh, Poon, Toutanova. In Progress.



http://literome.azurewebsites.net
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Literome

Poon et al., “Literome: PubMed-Scale Genomic Knowledge 

Base in the Cloud”, Bioinformatics 2014.



PubMed-Scale Extraction

 Preliminary pass: 

 2 million instances

 13,000 genes, 870,000 unique regulations

 Applications:

 UCSC Genome Browser, MSR Interactions Track

 Expression profile modeling

 Validate de novo pathway prediction

 Etc.
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Poon, Toutanova, Quirk, “Distant Supervision for Cancer 

Pathway Extraction from Text”. PSB 2015. To appear.



Machine Science
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Evans & Rzhetsky, “Machine Science”. 

Science, Vol. 329, 2010.



Machine Science
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Machine Science
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Roadmap

 Extract richer knowledge:

 Cell type, experimental condition, …

 Hedging, negation, … 

 Formulate coherent models:

 Supporting evidence, contradiction, …

 Intellectual gaps, hypotheses, …

 Integrate w. data & experiments:

 Cancer panomics  Driver genes / pathways

 Single-drug response  Drug combo prioritization
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Big Mechanism

 42-million program

 Reading, Assembly, Explanation

 Domain: Cancer signaling pathways

 We are in

 PI: Andrey Rzhetsky

 Co-PI w. James Evans, Ross King
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We Have Digitized Life

58



Next: Digitize Medicine
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Knock down genes A, B, C → Cure



Summary

 Precision medicine is the future

 Cancer systems modeling

Graphical model: Pathways + Panomics data

 Extract pathways from PubMed

Machine reading by grounded semantic parsing

 Literome: KB for genomic medicine
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